west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "three-dimensional bio-printing" 3 results
  • Research progress on the technique and materials for three-dimensional bio-printing

    Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.

    Release date:2017-04-13 10:03 Export PDF Favorites Scan
  • Advance of new dressings for promoting skin wound healing

    As a temporary skin substitute, the dressings can protect the wound, stop bleeding, prevent infection and contribute to wound healing. According to the characteristics of the materials, wound dressings can be classified into traditional wound dressings, interactive dressings, bioactive dressings, tissue engineering dressings and smart dressings, etc. Different dressings have different characteristics, and some products have been widely used in clinic. Recently nanomaterials and three-dimensional bio-printing technology have significantly improved the performance of wound dressings. Future dressings will be developed from single function to multi-function composite, and integrated into an intelligent one. This paper reviews the current research progress and future development prospects of wound dressings.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
  • Research progress of in-situ three dimensional bio-printing technology for repairing bone and cartilage injuries

    Objective To review the research progress of in-situ three dimensional (3D) bio-printing technology in the repair of bone and cartilage injuries. Methods Literature on the application of in-situ 3D bio-printing technology to repair bone and cartilage injuries at home and abroad in recent years was reviewed, analyzed, and summarized. Results As a new tissue engineering technology, in-situ 3D bio-printing technology is mainly applied to repair bone, cartilage, and skin tissue injuries. By combining biomaterials, bioactive substances, and cells, tissue is printed directly at the site of injury or defect. At present, the research on the technology mainly focuses on printing mode, bio-ink, and printing technology; the application research in the field of bone and cartilage mainly focuses on pre-vascularization, adjusting the composition of bio-ink, improving scaffold structure, printing technology, loading drugs, cells, and bioactive factors, so as to promote tissue injury repair. Conclusion Multiple animal experiments have confirmed that in-situ 3D bio-printing technology can construct bone and cartilage tissue grafts in a real-time, rapid, and minimally invasive manner. In the future, it is necessary to continue to develop bio-inks suitable for specific tissue grafts, as well as combine with robotics, fusion imaging, and computer-aided medicine to improve printing efficiency.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content