Tinnitus is a subjective sensation of sound without external stimulation. It has become ubiquitous and has therefore aroused much attention in recent years. According to the survey, ameliorating tinnitus based on special music and reducing pressure have good effects on the treatment of it. Meantime, vicious cycle chains between tinnitus and bad feelings have been broken. However, tinnitus therapy has been restricted by using looping music. Therefore, a method of generating fractal tones based on musical instrument digital interface (MIDI) technology and pink noise has been proposed in this paper. The experimental results showed that the fractal fragments were self-similar, incompletely reduplicate, and no sudden changes in pitches and would have a referential significance for tinnitus therapy.
Tinnitus is a common clinical symptom and its occurrence rate is high. It seriously affects life quality of the patients. Scientific researches show that listening some similar and none-repetitive music can relieve tinnitus to some extent. The overall music accorded with self-similarity character by the direct mapping method based on chaos. However, there were often the same tones continuous repeating a few times and tone mutations. To solve the problem, this paper proposes a new method for tinnitus rehabilitation sound synthesis based on pentatonic scale, chaos and musical instrument digital interface (MIDI). Experimental results showed that the tinnitus rehabilitation sounds were not only self-similar and incompletely reduplicate, but also no sudden changes. Thus, it has a referential significance for tinnitus treatment.
The incidence of tinnitus is very high, which can affect the patient’s attention, emotion and sleep, and even cause serious psychological distress and suicidal tendency. Currently, there is no uniform and objective method for tinnitus detection and therapy, and the mechanism of tinnitus is still unclear. In this study, we first collected the resting state electroencephalogram (EEG) data of tinnitus patients and healthy subjects. Then the power spectrum topology diagrams were compared of in the band of δ (0.5–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–30 Hz) and γ (31–50 Hz) to explore the central mechanism of tinnitus. A total of 16 tinnitus patients and 16 healthy subjects were recruited to participate in the experiment. The results of resting state EEG experiments found that the spectrum power value of tinnitus patients was higher than that of healthy subjects in all concerned frequency bands. The t-test results showed that the significant difference areas were mainly concentrated in the right temporal lobe of the θ and α band, and the temporal lobe, parietal lobe and forehead area of the β and γ band. In addition, we designed an attention-related task experiment to further study the relationship between tinnitus and attention. The results showed that the classification accuracy of tinnitus patients was significantly lower than that of healthy subjects, and the highest classification accuracies were 80.21% and 88.75%, respectively. The experimental results indicate that tinnitus may cause the decrease of patients’ attention.