Objective To observe the effect of threaded titanium cage and transpedical screw for the treatment of lumbar spondylolisthesis. Methods Eighteen patients with lumbar spondylolisthesis were adopted in this study. Among them, there were 8 males and 10 females, aged from 43 to 62 years old .Roentgenogramshowed that there were 6 cases of Ⅰ° spondylolisthesis, 11 cases of Ⅱ° and 1 case of Ⅲ°. All patients were treated with cages for intervertebral fusion after total laminectomy and pedicle screws for the reduction. Results The cases were followed up from 6 to 12 months with an average of 11 months. The clinical results were excellent in 13 cases and good in 5 cases. All patients achieved successful fusion and bony union . There were no pedicle screw loosening or broken or peripheral nerve dysfunction in this series. Conclusion This method has been proved to be an effective and reliable procedure for treatment of lumbar spondylolithesis. It produces a high fusion rate and clinical success.
Objective To evaluate the effectiveness of using titanium alloy trabecular bone three-dimensional (3D) printed artificial vertebral body in treating cervical ossification of the posterior longitudinal ligament (OPLL). Methods A retrospective analysis was conducted on clinical data from 45 patients with cervical OPLL admitted between September 2019 and August 2021 and meeting the selection criteria. All patients underwent anterior cervical corpectomy and decompression, interbody bone graft fusion, and titanium plate internal fixation. During operation, 21 patients in the study group received titanium alloy trabecular bone 3D printed artificial vertebral bodies, while 24 patients in the control group received titanium cages. There was no significant difference in baseline data such as gender, age, disease duration, affected segments, or preoperative pain visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, Neck Disability Index (NDI), vertebral height, and C2-7 Cobb angle (P>0.05). Operation time, intraoperative blood loss, and occurrence of complications were recorded for both groups. Preoperatively and at 3 and 12 months postoperatively, the functionality and symptom relief were assessed using JOA scores, VAS scores, and NDI evaluations. The vertebral height and C2-7 Cobb angle were detected by imaging examinations and the implant subsidence and intervertebral fusion were observed. Results The operation time and incidence of complications were significantly lower in the study group than in the control group (P<0.05), while the difference in intraoperative blood loss between the two groups was not significant (P>0.05). All patients were followed up 12-18 months, with the follow-up time of (14.28±4.34) months in the study group and (15.23±3.54) months in the control group, showing no significant difference (t=0.809, P=0.423). The JOA score, VAS score, and NDI of the two groups improved after operation, and further improved at 12 months compared to 3 months, with significant differences (P<0.05). At each time point, the study group exhibited significantly higher JOA scores and improvement rate compared to the control group (P<0.05); but there was no significantly difference in VAS score and NDI between the two groups (P>0.05). Imaging re-examination showed that the vertebral height and C2-7 Cobb angle of the two groups significantly increased at 3 and 12 months after operation (P<0.05), and there was no significant difference between 3 and 12 months after operation (P>0.05). At each time point, the vertebral height and C2-7 Cobb angle of the study group were significantly higher than those of the control group (P<0.05), and the implant subsidence rate was significantly lower than that of the control group (P<0.05). However, there was no significant difference in intervertebral fusion rate between the two groups (P>0.05). Conclusion Compared to traditional titanium cages, the use of titanium alloy trabecular bone 3D-printed artificial vertebral bodies for treating cervical OPLL results in shorter operative time, fewer postoperative complications, and lower implant subsidence rates, making it superior in vertebral reconstruction.