ObjectiveTo explore the gait trajectory characteristics of patients after total knee arthroplasty (TKA) assisted by three-dimensional (3D) printing navigation template.MethodsTwenty female patients (20 knees) with knee osteoarthritis who were treated with TKA assisted by 3D printing navigation template between February 2017 and February 2018 were selected as the 3D printing group. The patients were 50-69 years old, with an average age of 57.2 years. The disease duration was 4-7 years, with an average of 5.6 years. The osteoarthritis was classified as Kellgren-Lawrence Ⅲ level in 5 cases and Ⅳ level in 15 cases. The preoperative hip-knee-ankle angle (HKA) was (170.8±5.6)°. All patients were varus deformity. According to age and affected side, 20 healthy female volunteers were selected as the control group. The volunteers were 51-70 years old, with an average age of 56.7 years. Preoperative HKA was (178.8±0.6)°. There was significant difference in HKA between the two groups (P>0.05). The HKA, Western Ontario and McMaster University Osteoarthritis Index (WOMAC), and visual analogue scale (VAS) scores of the 3D printing group before and after operation were compared. At 6 months after operation, the gait trajectory characteristics of 3D printing group and control group were analyzed by Vicon gait capture system. The kinematics parameters included velocity, cadence, stride length, maximum knee flexion angle (stance), minimum knee flexion angle (stance), maximum knee flexion angle (swing), mean hip rotation angle (stance), mean ankle rotation angle (stance).ResultsThe incisions of 3D printing group healed by first intention, with no complications. All patients were followed up 7-12 months (mean, 9.0 months). The WOMAC and VAS scores at 6 months after operation were significant lower than those before operation (P<0.05). The HKA was (178.8±0.8)° at 4 weeks after operation and the difference was significant when compared with that before operation (t=39.203, P=0.000). The position of the prosthesis was good. The femoral posterior condyle osteotomy line, surgical transepicondylar axis, and patella transverse line were parallel, varus deformity was corrected, and lower limb alignment was restored to neutral position. Gait analysis at 6 months after operation showed that the differences in all kinematics parameters between the two groups were significant (P<0.05).ConclusionAssisted by 3D printing navigation template, TKA can alleviate pain symptoms and correct deformity, with satisfactory early effectiveness. Compared with healthy people, the early postoperative gait of the patients were characterized by decreasing velocity, cadence, stride length, knee flexion range, and increasing compensatory hip and ankle rotation range.
ObjectiveTo investigate the effect of three-dimensional (3D) printing guide plate on improving femoral rotational alignment and patellar tracking in total knee arthroplasty (TKA).MethodsBetween January 2018 and October 2018, 60 patients (60 knees) with advanced knee osteoarthritis who received TKA and met the selection criteria were selected as the study subjects. Patients were randomly divided into two groups according to the random number table method, with 30 patients in each group. The TKA was done with the help of 3D printing guide plate in the guide group and following traditional procedure in the control group. There was no significant difference in gender, age, disease duration, side, and preoperative hip-knee-ankle angle (HKA), posterior condylar angle (PCA), patella transverse axis-femoral transepicondylar axis angle (PFA), Hospital for Special Surgery (HSS) score, and American Knee Society (AKS) score (P>0.05).ResultsAll incisions healed by first intention and no complications related to the operation occurred. All patients were followed up 10-12 months, with an average of 11 months. HSS score and AKS score of the two groups at 6 months after operation were significantly higher than those before operation (P<0.05), but there was no significant difference between the two groups (P>0.05). Postoperative X-ray films showed that the prosthesis was in good position, and no prosthesis loosening or sinking occurred during follow-up. HKA, PCA, and PFA significantly improved in the two groups at 10 months after operation compared with those before operation (P<0.05). There was no significant difference in HKA at 10 months between the two groups (t=1.031, P=0.307). PCA and PFA in the guide group were smaller than those in the control group (P<0.05).ConclusionApplication of 3D printing guide plate in TKA can not only correct the deformity of the knee joint and alleviate the pain symptoms, but also achieve the goal of the accurate femoral rotation alignment and good patellar tracking.
ObjectiveTo investigate the improvement of femoral rotation alignment in total knee arthroplasty (TKA) by robotic-arm assisted positioning and osteotomy and its short-term effectiveness.MethodsBetween June 2020 and November 2020, 60 patients (60 knees) with advanced osteoarthritis of the knee, who met the selection criteria, were selected as the study subjects. Patients were randomly divided into two groups according to the random number table method, with 30 patients in each group. Patients were treated with robotic-arm assisted TKA (RATKA) in trial group, and with conventional TKA in control group. There was no significant difference in gender, age, side and course of osteoarthritis, body mass index, and the preoperative hip-knee-ankle angle (HKA), lateral distal femoral angle (LDFA), medial proximal tibial angle (MPTA), posterior condylar angle (PCA), knee society score-knee (KSS-K) and KSS-function (KSS-F) scores between the two groups (P>0.05). The clinical (KSS-K, KSS-F scores) and imaging (HKA, LDFA, MPTA, PCA) evaluation indexes of the knee joints were compared between the two groups at 3 months after operation.ResultsAll patients were successfully operated. The incisions in the two groups healed by first intention, with no complications related to the operation. Patients in the two groups were followed up 3-6 months, with an average of 3.9 months. KSS-K and KSS-F scores of the two groups at 3 months after operation were significantly higher than those before operation (P<0.05), but there was no significant difference between the two groups (P>0.05). X-ray re-examination showed that the prosthesis was in good position, and no prosthesis loosening or sinking occurred. HKA, MPTA, and PCA significantly improved in both groups at 3 months after operation (P<0.05) except LDFA. There was no significant difference in HKA, LDFA, and MPTA between the two groups (P>0.05). PCA in trial group was significantly smaller than that in control group (t=2.635, P=0.010).ConclusionRATKA can not only correct knee deformity, relieve pain, improve the quality of life, but also achieve the goal of restoring accurate femoral rotation alignment. There was no adverse event after short-term follow-up and the effectiveness was satisfactory.