west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "transcranial direct current stimulation" 5 results
  • Review of cognitive enhancement techniques based on the combination of cognitive training and transcranial direct current stimulation

    Cognitive enhancement refers to the technology of enhancing or expanding the cognitive and emotional abilities of people without psychosis based on relevant knowledge of neurobiology. The common methods of cognitive enhancement include transcranial direct current stimulation (tDCS) and cognitive training (CT). tDCS takes effect quickly, with a short effective time, while CT takes longer to work, requiring several weeks of training, with a longer effective time. In recent years, some researchers have begun to use the method of tDCS combined with CT to regulate the cognitive function. This paper will sort out and summarize this topic from five aspects: perception, attention, working memory, decision-making and other cognitive abilities. Finally, the application prospect and challenges of technology are prospected.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
  • Research on characteristics of brain functional network in stroke patients during convalescent period under transcranial direct current stimulation

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive brain stimulation technique. However, the rehabilitation effect of tDCS on stroke disease is unclear. In this paper, based on electroencephalogram (EEG) and complex network analysis methods, the effect of tDCS on brain function network of stroke patients during rehabilitation was investigated. The resting state EEG signals of 31 stroke rehabilitation patients were collected and divided into stimulation group (16 cases) and control group (15 cases). The Pearson correlation coefficients were calculated between the channels, brain functional network of two groups were constructed before and after stimulation, and five characteristic parameters were analyzed and compared such as node degree, clustering coefficient, characteristic path length, global efficiency, and small world attribute. The results showed that node degree, clustering coefficient, global efficiency, and small world attributes of brain functional network in the tDCS group were significantly increased, characteristic path length was significantly reduced, and the difference was statistically significant (P < 0.05). It indicates that tDCS can improve the brain function network of stroke patients in rehabilitation period, and may provide theory and experimental basis for the application of tDCS in stroke rehabilitation treatment.

    Release date:2021-06-18 04:52 Export PDF Favorites Scan
  • Research on enhancement of mental rotation ability based on transcranial direct current stimulation

    Transcranial direct current stimulation (tDCS) is a non-invasive low-current brain stimulation technique, which is mainly based on the different polarity of electrode stimulation to make the activation threshold of neurons different, thereby regulating the excitability of the cerebral cortex. In this paper, healthy subjects were randomly divided into three groups: anodal stimulation group, cathodal stimulation group and sham stimulation group, with 5 subjects in each group. Then, the performance data of the three groups of subjects were recorded before and after stimulation to test their mental rotation ability, and resting state and task state electroencephalogram (EEG) data were collected. Finally, through comparative analysis of the behavioral data and EEG data of the three groups of subjects, the effect of electrical stimulation of different polarities on the three-dimensional mental rotation ability was explored. The results of the study found that the correct response time/accuracy rate and the accuracy rate performance of the anodal stimulation group were higher than those of the cathodal stimulation and sham stimulation groups, and there was a significant difference (P < 0.05). The alpha wave power analysis found that the mental rotation mainly activates the frontal lobe, central area, parietal lobe and occipital lobe. In the anodal stimulation group, the alpha wave power changed significantly in the frontal lobe and occipital lobe (P < 0.05). The results of this paper show that anodal stimulation group can improve the mental rotation ability of the subjects to a certain extent. The results of this paper can provide important theoretical support for further research on the mechanism of tDCS on mental rotation ability.

    Release date: Export PDF Favorites Scan
  • Effects of parameters selection with transcranial direct current stimulation based on real head model

    Transcranial direct current stimulation (tDCS) is a brain stimulation intervention technique, which has the problem of different criteria for the selection of stimulation parameters. In this study, a four-layer real head model was constructed. Based on this model, the changes of the electric field distribution in the brain with the current intensity, electrode shape, electrode area and electrode spacing were analyzed by using finite element simulation technology, and then the optimal scheme of electrical stimulation parameters was discussed. The results showed that the effective stimulation region decreased and the focusing ability increased with the increase of current intensity. The normal current density of the quadrilateral electrode was obviously larger than that of the circular electrode, which indicated that the quadrilateral electrode was more conducive to current stimulation of neurons. Moreover, the effective stimulation region of the quadrilateral electrode was more concentrated and the focusing ability was stronger. The focusing ability decreased with the increase of electrode area. Specifically, the focusing tended to increase first and then decrease with the increase of electrode spacing and the optimal electrode spacing was 64.0–67.2 mm. These results could provide some basis for the selection of electrical stimulation parameters.

    Release date: Export PDF Favorites Scan
  • Research on electroencephalogram power spectral density of stroke patients under transcranial direct current stimulation

    Transcranial direct current stimulation (tDCS) has become a new method of post-stroke rehabilitation treatment and is gradually accepted by people. However, the neurophysiological mechanism of tDCS in the treatment of stroke still needs further study. In this study, we recruited 30 stroke patients with damage to the left side of the brain and randomly divided them into a real tDCS group (15 cases) and a sham tDCS group (15 cases). The resting EEG signals of the two groups of subjects before and after stimulation were collected, then the difference of power spectral density was analyzed and compared in the band of delta, theta, alpha and beta, and the delta/alpha power ratio (DAR) was calculated. The results showed that after real tDCS, delta band energy decreased significantly in the left temporal lobes, and the difference was statistically significant (P < 0.05); alpha band energy enhanced significantly in the occipital lobes, and the difference was statistically significant (P < 0.05); the difference of theta and beta band energy was not statistically significant in the whole brain region (P > 0.05). Furthermore, the difference of delta, theta, alpha and beta band energy was not statistically significant after sham tDCS (P > 0.05). On the other hand, the DAR value of stroke patients decreased significantly after real tDCS, and the difference was statistically significant (P < 0.05), and there was no significant difference in sham tDCS (P > 0.05). This study reveals to a certain extent the neurophysiological mechanism of tDCS in the treatment of stroke.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content