The present paper proposed a central-driven structure of upper limb rehabilitation robot in order to reduce the volume of the robotic arm in the structure, and also to reduce the influence of motor noise, radiation and other adverse factors on upper limb dysfunction patient. The forward and inverse kinematics equations have been obtained with using the Denavit-Hartenberg (D-H) parameter method. The motion simulation has been done to obtain the angle-time curve of each joint and the position-time curve of handle under setting rehabilitation path by using SolidWorks software. Experimental results showed that the rationality with the central-driven structure design had been verified by the fact that the handle could move under setting rehabilitation path. The effectiveness of kinematics equations had been proved, and the error was less than 3°by comparing the angle-time curves obtained from calculation with those from motion simulation.
Robot rehabilitation has been a primary therapy method for the urgent rehabilitation demands of paralyzed patients after a stroke. The parameters in rehabilitation training such as the range of the training, which should be adjustable according to each participant’s functional ability, are the key factors influencing the effectiveness of rehabilitation therapy. Therapists design rehabilitation projects based on the semiquantitative functional assessment scales and their experience. But these therapies based on therapists’ experience cannot be implemented in robot rehabilitation therapy. This paper modeled the global human-robot by Simulink in order to analyze the relationship between the parameters in robot rehabilitation therapy and the patients’ movement functional abilities. We compared the shoulder and elbow angles calculated by simulation with the angles recorded by motion capture system while the healthy subjects completed the simulated action. Results showed there was a remarkable correlation between the simulation data and the experiment data, which verified the validity of the human-robot global Simulink model. Besides, the relationship between the circle radius in the drawing tasks in robot rehabilitation training and the active movement degrees of shoulder as well as elbow was also matched by a linear, which also had a remarkable fitting coefficient. The matched linear can be a quantitative reference for the robot rehabilitation training parameters.
With the aging of the society, the number of stroke patients has been increasing year by year. Compared with the traditional rehabilitation therapy, the application of upper limb rehabilitation robot has higher efficiency and better rehabilitation effect, and has become an important development direction in the field of rehabilitation. In view of the current development status and the deficiency of upper limb rehabilitation robot system, combined with the development trend of all kinds of products of the upper limb rehabilitation robot, this paper designed a center-driven upper limb rehabilitation training robot for cable transmission which can help the patients complete 6 degrees of freedom (3 are driven, 3 are underactuated) training. Combined the structure of robot with more joints rehabilitation training, the paper choosed a cubic polynomial trajectory planning method in the joint space planning to design two trajectories of eating and lifting arm. According to the trajectory equation, the movement trajectory of each joint of the robot was drawn in MATLAB. It laid a foundation for scientific and effective rehabilitation training. Finally, the experimental prototype is built, and the mechanical structure and design trajectories are verified.
ObjectiveTo explore the clinical effect of the end-traction upper limb rehabilitation training system on patients with upper limb motor dysfunction after stroke.MethodsPatients with upper limb motor dysfunction who were admitted to the Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University from September to November 2019 were selected. According to the software, the patients were randomly divided into the experimental group and the control group. Both groups received conventional medical treatment, basic rehabilitation, and activities of daily living training. In addition, the control group received traditional occupational therapy, while the experimental group received end-traction upper limb rehabilitation training. The training time of both groups was 30 min/ (times ·d) and 5 days per week. Rehabilitation evaluation and recording were performed before and after the four-week treatment in both groups using the simplified upper extremity Fugl-Meyer assessment (FMA) and the modified Barthel index (MBI).ResultsA total of 36 patients were enrolled, with 18 in each group. All patients completed the experiment, and no special discomfort was observed. Before the treatment, there was no statistically significant difference in FMA and MBI between the experimental group [(13.22±3.13) and (49.66±6.81) points] and the control group [(14.78±1.70) and (51.67±6.65) points] (t=1.858, 0.896; P=0.072, 0.377). After four-week treatment, FMA and MBI in both groups improved significantly (P<0.05); the difference between the experimental group [(27.56±15.68) and (73.55±8.72) points] and the control group [(17.67±6.73) and (65.33±9.20) points] was statistically significant (t=2.459, 2.751; P=0.019, 0.009).ConclusionsThe end-traction upper limb rehabilitation training system can significantly improve the upper limb motor function of patients with upper limb motor dysfunction after stroke and improve the patients’ daily life ability. It is worthy of clinical promotion and application.