Objective To investigate the role and relative mechanism of stromal cell derived factorl (SDF-1) secreted by nucleus pulposus cells (NPCs) on the proliferation of vascular endothelial cells (VECs). Methods The NPCs were isolated from the degenerated disc specimens after discectomy. NPCs at passage 1 were transfected with lentivirus-mediated SDF-1 over-expression; transfected and untransfected NPCs at passage 2 were cultured in the three-dimensional alvetex® scaffold, then they were co-cultured with HMEC-1 cells. The morphology of NPCs was observed by scanning electron microscope (SEM), and the apoptosis of HMEC-1 cells was detected by Annexin V/propidiumiodide staining after 72 hours co-culutre. The proliferation of HMEC-1 cells was detected by cell counting kit 8 at 12, 24, 48, and 72 hours in transfected group and untransfected group, respectively. ELISA was used to measure the vascular endothelial growth factor (VEGF) expression level. The virus transfection efficiency and relative Akt pathway were determined by Western blot. Results The NPCs maintained cell phenotype and secreted much extracellular matrix in three-dimensional-culture by SEM observation. In the co-culutre system, after NPCs were transfected with SDF-1 over-expression lentivirus, the proliferation of HMEC-1 cells was significantly increased, while the apoptosis was decreased obviously. The ELISA results demonstrated that the amount of VEGF was remarkably increased in the culture medium. Furthermore, SDF-1 promoted the up-regulation of phosphorylate Akt expression; after inhibition of Akt expression by GSK690693, the proliferation rate of VECs decreased significantly. Conclusion Over-expression of SDF-1 by NPCs is beneficial for VECs proliferation, which is involved in SDF-1-Akt signalling pathway.
Objective To observe the effect of high expression of polypyrimidine tract-binding protein-associated splicing factor (PSF) on low concentration of 4-hydroxynonenal (4-HNE) induced human retinal microvascular endothelial cells (HRMECs), and explore the possible mechanism. MethodsThe HRMECs cultured in vitro were divided into 4-HNE treated group, PSF overexpression group combined with 4-HNE group (PSF+4-HNE group), PSF overexpression+ML385 treatment combined with 4-HNE group (PSF+ML385+4-HNE group), and 4-HNE induced PSF overexpression group with LY294002 pretreatment (LY294002+4-HNE+PSF group). Cell culture medium containing 10 μmmol/L 4-HNE was added into 4-HNE treatment group, PSF+4-HNE group, PSF+ML385+4-HNE group for 12 hours to stimulate oxidative stress. 1.0 μg of pcDNA-PSF eukaryotic expression plasmid were transfected into PSF+4-HNE group and PSF+ML385+4-HNE group to achieve the overexpression of PSF. Also cells were pretreated with ML385 (5 μmol/L) for 48 hours in the PSF+ML385+4-HNE group, meanwhile within the LY294002+4-HNE+PSF group, after pretreatment with LY294002, cells were treated with plasmid transfection and 4-HNE induction. Transwell detects the migration ability of PSF to HRMECs. The effect of PSF on the lumen formation of HRMECs was detected by using Matrigel in vitro three-dimensional molding method. Flow cytometer was used to detect the effect of PSF overexpression on reactive oxygen (ROS) level in HRMECs. Protein immunoblotting was used to detect the relative expression of PSF, nuclear factor E2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) protein, and phosphoserine threonine protein kinase (pAkt) protein. The comparison between the two groups was performed using a t-test. ResultsThe number of live cells, migrating cells, and intact lumen formation in the 4-HNE treatment group and the PSF+4-HNE group were 1.70±0.06, 0.80±0.13, 24.00±0.58, 10.00±0.67, and 725.00±5.77, 318.7±12.13, respectively. There were significant differences in the number of live cells, migrating cells, and intact lumen formation between the two groups (t=12.311, 15.643, 17.346; P<0.001). The results of flow cytometry showed that the ROS levels in the 4-HNE treatment group, PSF+4-HNE group, and PSF+ML385+4-HNE group were 816.70±16.67, 416.70±15.44, and 783.30±17.41, respectively. There were statistically significant differences between the two groups (t=16.311, 14.833, 18.442; P<0.001). Western blot analysis showed that the relative expression levels of pAkt, Nrf2, and HO-1 proteins in HRMECs in the 4-HNE treatment group, PSF+4-HNE group and LY294002+4-HNE+PSF group were 0.08±0.01, 0.57±0.04, 0.35±0.09, 0.17±0.03, 1.10±0.06, 0.08±0.11 and 0.80±0.14, 2.50±0.07, 0.50±0.05, respectively. Compared with the PSF+4-HNE group, the relative expression of pAkt, Nrf2, and HO-1proteins in the LY294002+4-HNE+PSF group decreased significantly, with significant differences (t=17.342, 16.813, 18.794; P<0.001). ConclusionPSF upregulates the expression of HO-1 by activating the phosphatidylinositol 3 kinase/Akt pathway and inhibits cell proliferation, migration, and lumen formation induced by low concentrations of 4-HNE.
OBJECTIVE: To determine an optimal co-culture ratio of the rabbit periosteal osteoblasts (RPOB) and rabbit renal vascular endothelial cells(RRVEC) without direct contact for future study of bone tissue engineering. METHODS: RPOB and RRVEC in the ratios of 1:0(control group), 2:1(group 1), 1:1(group 2) and 1:2(group 3) were co-cultured by six well plates and cell inserts. Four days later, the proliferation of RPOB and RRVEC were examined through cell count. Differentiated cell function was assessed by alkaline phosphatase (ALP) activity assay and 3H proline incorporation assay. RESULTS: When RPOB and RRVEC were indirectly co-cultured, the proliferation of RPOB and 3H proline incorporation was higher in group 1 than in the other experimental groups and control group (P lt; 0.05). ALP activity of RPOB was higher in group 1 than in control group and group 3 (P lt; 0.05), but there was no significant difference between group 1 and group 2 (P gt; 0.05). CONCLUSION: These results suggest that RPOB and RRVEC co-cultured in a ratio of 2:1 is optimal for future study of bone tissue engineering.
ObjectiveTo observe the effects of four prostaglandin E2 (PGE2) receptors (EP1-4R) on the activation of inflammasomes and cell damage in human retinal microvascular endothelial cells (hRMEC) in a high glucose environment.MethodsThe hRMEC were divided into normal group and high glucose group, and they were cultured in Dulbecco modified Eagle medium containing 5.5 and 30.0 mmol/L glucose, respectively. Flow cytometry was used to observe the apoptosis rate of the high glucose group and the normal group; enzyme chain immunosorbent assay (ELISA) was used to detect the level of PGE2 in the culture supernatant of hRMEC cells. Western blot was used to detect the protein expression of cyclooxyganese (COX2) and EP1-4R in hRMEC. Real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of EP1-4R mRNA in hRMEC. After 72 h of culture, the cells in the high glucose group were divided into control group, PGE2 group, EP1-4R agonist group, PGE2+EP1-4R inhibitor group, and dimethylsulfoxide group. According to the group, each group was given the corresponding agonist or inhibitor to continue the culture for 24 h. QRT-PCR was used to detect the expression of nucleotide-binding oligomerization structure-like receptor protein (NLRP3) and pro-interleukin (IL)-1β mRNA in each group of cells. ELISA was used to detect the content of IL-1β and lactic dehydrogenase (LDH) in the cell culture supernatant. Western blot was used to detect the expression of cleaved Caspase-1 in each group of cells. At the same time, hRMEC in a high glucose environment was given IL-1β stimulation for 24 h, and the activity of LDH in the supernatant of the cell culture medium was detected.ResultsThe apoptotic rate, COX2 protein expression, and PGE2 protein content in hRMEC in the high glucose group were significantly higher than those in the normal group, and they were time-dependent. Compared with the normal group, the expression levels of EP1R, EP2R, EP4R protein and mRNA in hRMEC in the high glucose group were higher than those in the normal group (P<0.05). Compared with the control group, PGE2 group (t=4.627, P<0.01), EP1-4R agonist group (t=3.889, 3.583, 2.445, 3.216; P<0.05) hRMEC NLRP3 mRNA expression level was significantly increased; the expression level of pro-IL-1β mRNA increased, however the difference was not statistically significant (PGE2 group: t=1.807, P>0.05; EP1-4R agonist group: t=1.807, 1.477, 0.302, 1.926, P>0.05). Compared with the PGE2 group, the expression of NLRP3 mRNA in hRMEC in the PGE2+EP2R inhibitor group was significantly reduced (t=2.812, P<0.05); the expression of pro-IL-1β mRNA in hRMEC in the PGE2+EP3R inhibitor group was significantly increased (t=4.113, P<0.01). The protein content of IL-1β in the cell culture supernatant of the PGE2 group, EP1R agonist group and EP2R agonist group was significantly higher than that of the control group (t=5.155, 4.136, 4.817; P<0.01). Compared with PGE2 group, the protein content of IL-1β in the cell culture supernatant of the PGE2+EP2R inhibitor group and the PGE2+EP4R inhibitor group were significantly lower than that of the PGE2 group (t=1.964, 4.765; P<0.05). The expression of cleaved Caspase-1 in hRMEC in the PGE2 group and EP2R agonist group was significantly higher than that in the control group (t=5.332, 4.889; P<0.05). The expression of cleaved Caspase-1 in hRMEC in the PGE2+EP2R inhibitor group was significantly lower than that of the PGE2 group (t=6.699, P<0.01). The LDH activity in the cell culture supernatant of the PGE2 group and the EP2R agonist group was significantly higher than that of the control group (t=4.908, 4.225; P<0.05). The activity of LDH in the cell culture supernatant of the PGE2+EP2R inhibitor group was significantly lower than that of the PGE2 group (t=5.301, P<0.01). Compared with the control group, the LDH activity in the culture supernatant of hRMEC cells in the high glucose environment was significantly increased (t=3.499, P<0.05).ConclusionsThe four receptors of PGE2 can activate NLRP3 and its effector molecules to varying degrees. EP2R mainly mediates hRMEC damage under high glucose environment.
ObjectiveTo observe the effect of interleukin-8 (IL-8) on the adhesion and migration of retinal vascular endothelial cells (RCEC). MethodsA cell experiment. Human RCEC (hRCEC) was divided into normal control group (N group), advanced glycation end product (AGE) treatment group (AGE group), and AGE-induced combined IL-8 antagonist SB225002 treatment group (AGE+SB group). The effect of AGE on IL-8 expression in hRCEC was observed by Western blot. The effect of SB225002 on hRCEC migration was observed by cell scratch assay. The effects of SB225002 on leukocyte adhesion and reactive oxygen species (ROS) on hRCEC were detected by flow cytometry. Student-t test was performed between the two groups. One-way analysis of variance was performed among the three groups. ResultsCompared with group N, the expression level of IL-8 in cells of AGE group was significantly increased, with statistical significance (t=25.661, P<0.001). Compared with N group and AGE+SB group, cell mobility in AGE group was significantly increased (F=29.776), leukocyte adhesion number was significantly increased (F=38.159, 38.556), ROS expression level was significantly increased (F=22.336), and the differences were statistically significant (P<0.05). ConclusionIL-8 antagonist SB225002 may down-regulate hRCEC adhesion and migration by inhibiting ROS expression.
Objective To investigate the effect and potential mechanism of bone marrow mesenchymal stem cells (BMSCs) - derived extracellular vesicles (EVs) on lung tissue injury in mice with severe acute pancreatitis (SAP). Methods A total of 24 specific pathogen free grade male C57BL/6 mice and primary mouse lung microvascular endothelial cells (PMVECs) were selected. The mice were divided into sham group, SAP group, and BMSC group, with 8 mice in each group. The mouse primary PMVECs were divided into model group [sodium taurocholate (NaTC) group], BMSC-EV group, and control group. Extraction and characterization of healthy mouse BMSCs and their derived extracellular vesicles (BMSC-EVs) were conducted. A mouse model of SAP was established, and BMSC-EVs were injected into SAP mice by tail vein or intervened in PMVECs in vitro, to observe the pathological damage of pancreatic and lung tissues, the changes of serum amylase, lipase, and inflammatory factors [tumor necrosis factor α (TNF-α), interleukin-6 (IL-6)], the expression of inflammatory factors of lung tissues and PMVECs, and the endothelial cell barrier related proteins [E-cadherin, ZO-1, intercellular cell adhesion molecule-1 (ICAM-1)], and tight junctions between PMVECs to explore the effects of BMSC-EVs on pancreatic and lung tissues in SAP mice and PMVECs in vitro. Results BMSCs had the potential for osteogenic, chondrogenic, and lipogenic differentiation, and the EVs derived from them had a typical cup-shaped structure with a diameter of 60-100 nm. BMSC-EVs expressed the extracellular vesicle-positive proteins TSG101 and CD63 and did not express the negative protein Calnexin. Compared with the mice in the sham group, the SAP mice underwent significant pathological damage to the pancreas (P<0.05), and their serum amylase, lipase, inflammatory factor IL-6, and TNF-α levels were significantly up-regulated (P<0.05); whereas, BMSC-EVs markedly ameliorated the pancreatic tissue damage in the SAP mice (P<0.05), down-regulated the levels of peripheral serum amylase, lipase, IL-6 and TNF-α (P<0.05), and up-regulated the level of anti-inflammatory factor IL-10 (P<0.05). In addition to this, the SAP mice showed significant lung histopathological damage (P<0.05), higher neutrophils and macrophages infiltration (P<0.05), higher levels of the inflammatory factors TGF-β and IL-6 (P<0.05), as well as reduced barrier protein E-cadherin, ZO-1 expression and elevated expression of ICAM-1 (P<0.05). BMSC-EVs significantly ameliorated lung histopathological injury, inflammatory cells infiltration, inflammatory factor levels, and expression of barrier proteins, and suppressed ICAM-1 expression (P<0.05). In the in vitro PMVECs experiments, it was found that intercellular tight junctions were broken in the NaTC group, and the levels of inflammatory factors TNF-α and IL-6 were significantly up-regulated (P<0.05), the protein expression of E-cadherin and ZO-1 was significantly down-regulated (P<0.05), and the expression of ICAM-1 was significantly up-regulated (P<0.05). BMSC-EVs significantly improved intercellular tight junctions in the NaTC group and inhibited the secretion of TNF-α and IL-6 (P<0.05), up-regulated the expression of the barrier proteins E-cadherin and ZO-1, and down-regulated the expression of ICAM-1 (P<0.05). Conclusion BMSC-derived EVs ameliorate lung tissue injury in SAP mice by restoring the lung endothelial cell barrier and inhibiting inflammatory cell infiltration.
ObjectiveTo investigate the heterotopic osteogenesis of tissue engineered bone using the co-culture system of vascular endothelial cells (VECs) and adipose-derived stem cells (ADSCs) as seed cells.MethodsThe partially deproteinized biological bone (PDPBB) was prepared by fibronectin combined with partially deproteinized bone (PDPB). The ADSCs of 18-week-old Sprague Dawley (SD) rats and VECs of cord blood of full-term pregnant SD rats were isolated and cultured. Three kinds of tissue engineered bone were constructed in vitro: PDPBB+VECs (group A), PDPBB+ADSCs (group B), PDPBB+co-cultured cells (VECs∶ADSCs was 1∶1, group C), and PDPBB was used as control group (group D). Scanning electron microscopy was performed at 10 days after cell transplantation to observe cell adhesion on scaffolds. Forty-eight 18-week-old SD rats were randomly divided into groups A, B, C, and D, with 12 rats in each group. Four kinds of scaffolds, A, B, C, and D, were implanted into the femoral muscle bags of rats in corresponding groups. The animals were killed at 2, 4, 8, and 12 weeks after operation for gross observation, HE staining and Masson staining histological observation, and the amount of bone collagen was measured quantitatively by Masson staining section.ResultsScanning electron microscopy showed that the pores were interconnected in PDPB materials, and a large number of lamellar protein crystals on the surface of PDPBB modified by fibronection were loosely attached to the surface of the scaffold. After 10 days of co-culture PDPBB and cells, a large number of cells attached to PDPBB and piled up with each other to form cell clusters in group C. Polygonal cells and spindle cells were mixed and distributed, and some cells grew along bone trabeculae to form cell layers. Gross observation showed that the granulation tissue began to grow into the material pore at 2 weeks after operation. In group C, a large number of white cartilage-like substances were gradually produced on the surface of the material after 4 weeks, and the surface of the material was uneven. At 12 weeks, the amount of blood vessels on the surface of group A increased, and the material showed consolidation; there was a little white cartilage-like material on the surface of group B, but the pore size of the material did not decrease significantly; in group D, the pore size of the material did not decrease significantly. Histological observation showed that there was no significant difference in the amount of bone collagen between groups at 2 weeks after operation (F=2.551, P=0.088); at 4, 8, and 12 weeks after operation, the amount of bone collagen in group C was significantly higher than that in other 3 groups, and that in group B was higher than that in group D (P<0.05); there was no significant difference between group A and groups B, D (P>0.05).ConclusionThe ability of heterotopic osteogenesis of tissue engineered bone constructed by co-culture VECs and ADSCs was the strongest.
ObjectiveTo observe the effects of p21 activated kinase 4 (PAK4) on the mitochondrial function and biological behavior in retinal vascular endothelial cells. MethodsThe experimental study was divided into two parts: in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 12 healthy C57BL/6J male mice were randomly divided into normal control group and diabetes group, with 6 mice in each group. Diabetes mice were induced by streptozotocin to establish diabetes model. Eight weeks after modeling, quantitative real-time polymerase chain reaction and Western blots were performed to detect the expression of PAK4 in diabetic retinas. In vitro cell experiments: the human retinal microvascular endothelial cells (hRMEC) were divided into three groups: conventional cultured cells group (N group), empty vector transfected (Vector group); pcDNA-PAK4 eukaryotic expression plasmid transfected group (PAK4 group). WB and qPCR were used to detect transfection efficiency, while scratching assay, cell scratch test was used to detect cell migration in hRMEC of each group. In vitro white blood cell adhesion experiment combined with 4 ', 6-diamino-2-phenylindole staining was used to detect the number of white blood cells adhering to hRMEC in each group. The Seahorse XFe96 cell energy metabolism analyzer measures intracellular mitochondrial basal respiration, adenosine triphosphate (ATP) production, maximum respiration, and reserve respiration capacity. The t-test was used for comparison between the two groups. Single factor analysis of variance was used for comparison among the three groups. ResultsIn vivo animal experiments: compared with normal control group, the relative expression levels of PAK4 mRNA and protein in retina of diabetic mice were significantly increased, with statistical significance (t=25.372, 22.419, 25.372; P<0.05). In vitro cell experiment: compared with the N group and Vector group, the PAK4 protein, mRNA relative expression and cell mobility in the hRMEC of PAK4 group were significantly increased, with statistical significance (F=36.821, 38.692, 29.421; P<0.05). Flow cytometry showed that the adhesion number of leukocytes on hRMEC in PAK4 group was significantly increased, and the difference was statistically significant (F=39.649, P<0.01). Mitochondrial pressure measurement results showed that the capacity of mitochondrial basic respiration, ATP production, maximum respiration and reserve respiration in hRMEC in PAK4 group was significantly decreased, with statistical significance (F=27.472, 22.315, 31.147, 27.472; P<0.05). ConclusionOver-expression of PAK4 impairs mitochondrial function and significantly promotes leukocyte adhesion and migration in retinal vascular endothelial cells.
Objective To explore the effect of natural hirudin on proliferation of human microvascular endothelial cells (HMVECs) and its preliminary mechanism of promoting angiogenesis. Methods Three-dimensional culture models of HMVECs were established in vitro and observed by inverted phase contrast microscopy after 24 hours of culturing. Then, the three-dimensional culture models of HMVECs were treated with different concentrations (1, 4, and 7 ATU/mL) of the natural hirudin, respectively, and Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum as control. The cell proliferations of 4 groups were detected by cell counting kit 8 (CCK-8) method at 24, 48, and 72 hours; the angiogenesis of 4 groups were observed by tube formation assay at 24 hours; the expressions of vascular endothelial growth factor (VEGF) and Notch1 of HMVECs in 4 groups were observed by immunofluorescence staining at 24 hours. Results The observation of cells in three-dimensional culture models showed that HMVECs attached to Matrigel well, and the cells formed tube structure completely after 24 hours. The results of CCK-8 test showed that the absorbance (A) value of 1 and 4 ATU/mL groups were higher than that of control group at each time point (P<0.05), andA value of 4 ATU/mL group was the highest. The A value of 7 ATU/mL group was significantly lower than those of 1 and 4 ATU/mL groups and control group (P<0.05). The tube formation assay showed that the tube structure was more in 1 and 4 ATU/mL groups than in 7 ATU/mL group and control group, and in 4 ATU/mL group than in 1 ATU/mL group, showing significant differences (P<0.05). There was no significant difference between 7 ATU/mL group and control group (P>0.05). The results of immunofluorescence staining showed that compared with control group, the Notch1 expression was higher in 1 and 4 ATU/mL groups and lower in 7 ATU/mL group; and there was significant difference between 4 and 7 ATU/mL groups and control group (P<0.05). The VEGF expression was higher in 1, 4, and 7 ATU/mL groups than in control group, in 4 ATU/mL group than in 1 and 7 ATU/mL groups, showing significant differences (P<0.05). Conclusion Natural hirudin can promote angiogenesis at low and medium concentrations, but suppress angiogenesis at high concentrations. Its mechanism may be related to the VEGF-Notch signal pathway.
Coronary atherosclerotic heart disease is a serious threat to human life and health. In recent years, the main treatment for it is to implant the intravascular stent into the lesion to support blood vessels and reconstruct blood supply. However, a large number of experimental results showed that mechanical injury and anti-proliferative drugs caused great damage after stent implantation, and increased in-stent restenosis and late thrombosis risk. Thus, maintaining the integrity and normal function of the endothelium can significantly reduce the rate of thrombosis and restenosis. Stem cell mobilization, homing, differentiation and proliferation are the main mechanisms of endothelial repair after vascular stent implantation. Vascular factor and mechanical microenvironmental changes in implanted sites have a certain effect on re-endothelialization. In this paper, the process of injury caused by stent implantation, the repair mechanism after injury and its influencing factors are expounded in detail. And repairing strategies are analyzed and summarized. This review provides a reference for overcoming the in-stent restenosis, endothelialization delay and late thrombosis during the interventional treatment, as well as for designing drug-eluting and biodegradation stents.