west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "ventilation model" 2 results
  • Prospects and developments in the technologies of high frequency oscillatory ventilation

    The high frequency oscillatory ventilation (HFOV) is characterized with low tidal volume and low mean airway pressure, and can well support the breathing of the patients with respiratory diseases. Since the HFOV was proposed, it has been widely concerned by medical and scientific researchers. About the HFOV, this paper discussed its current research status and prospected its future development in technologies. The research status of ventilation model, mechanisms and ventilation mode were introduced in detail. In the next years, the technologies in developing HFOV will be focused on: to develop the branched high-order nonlinear or volume-depended resistance-inertance-compliance (RIC) ventilation model, to fully understand the mechanisms of HFOV and to achieve the noninvasive HFOV. The development in technologies of HFOV will be beneficial to the patients with respiratory diseases who failed with conventional mechanical ventilation as one of considerable ventilation methods.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
  • Design and simulation study of positive pressure ventilation system in a simulated human biological lung

    Simulation of the human biological lung is a crucial method for medical professionals to learn and practice the use of new pulmonary interventional diagnostic and therapeutic devices. The study on ventilation effects of the simulation under positive pressure ventilation mode provide valuable guidance for clinical ventilation treatment. This study focused on establishing an electrical simulation ventilation model, which aims to address the complexities in parameter configuration and slow display of air pressure and airflow waveforms in simulating the human biological lung under positive pressure ventilation mode. A simulated ventilation experiment was conducted under pressure-regulated volume control (PRVC) positive pressure ventilation mode, and the resulting ventilation waveform was compared with that of normal adults. The experimental findings indicated that the average error of the main reference index moisture value was 9.8% under PRVC positive pressure ventilation mode, effectively simulating the ventilatory effect observed in normal adults. So the established electrical simulation ventilation model is feasible, and provides a foundation for further research on the simulation of human biological lung positive pressure ventilation experimental platform.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content