Based on repeated experiments as well as continuous researching and improving, an efficient scheme to measure velocity and displacement of the coxa and knee movements based on video image processing technique is presented in this paper. The scheme performed precise and real-time quantitative measurements of 2D velocity or displacement of the coxa and knee using a video camera mounted on one side of the healing and training beds. The beds were based on simplified pinhole projection model. In addition, we used a special-designed auxiliary calibration target, composed by 24 circle points uniformly located on two concentric circles and two straight rods which can rotate freely along the concentric center within the vertical plane, to do the measurements. Experiments carried out in our laboratory showed that the proposed scheme could basically satisfy the requirements about precision and processing speed of such kind of system, and would be very suitable to be applied to smart evaluation/training and healing system for muscles/balance function disability as an advanced and intuitional helping method.
In order to solve the saturation distortion phenomenon of R component in fingertip video image, this paper proposes an iterative threshold segmentation algorithm, which adaptively generates the region to be detected for the R component, and extracts the human pulse signal by calculating the gray mean value of the region to be detected. The original pulse signal has baseline drift and high frequency noise. Combining with the characteristics of pulse signal, a zero phase digital filter is designed to filter out noise interference. Fingertip video images are collected on different smartphones, and the region to be detected is extracted by the algorithm proposed in this paper. Considering that the fingertip’s pressure will be different during each measurement, this paper makes a comparative analysis of pulse signals extracted under different pressures. In order to verify the accuracy of the algorithm proposed in this paper in heart rate detection, a comparative experiment of heart rate detection was conducted. The results show that the algorithm proposed in this paper can accurately extract human heart rate information and has certain portability, which provides certain theoretical help for further development of physiological monitoring application on smartphone platform.