Vena cava filter is a filter device designed to prevent pulmonary embolism caused by thrombus detached from lower limbs and pelvis. A new retrievable vena cava filter was designed in this study. To evaluate hemodynamic performance and thrombus capture efficiency after transplanting vena cava filter, numerical simulation of computational fluid dynamics was used to simulate hemodynamics and compare it with the commercialized Denali and Aegisy filters, and in vitro experimental test was performed to compare the thrombus capture effect. In this paper, the two-phase flow model of computational fluid dynamics software was used to analyze the outlet blood flow velocity, inlet-outlet pressure difference, wall shear stress on the wall of the filter, the area ratio of the high and low wall shear stress area and thrombus capture efficiency when the thrombus diameter was 5 mm, 10 mm, 15 mm and thrombus content was 10%, 20%, 30%, respectively. Meanwhile, the thrombus capture effects of the above three filters were also compared and evaluated by in vitro experimental data. The results showed that the Denali filter has minimal interference to blood flow after implantation, but has the worst capture effect on 5 mm small diameter thrombus; the Aegisy filter has the best effect on the trapping of thrombus with different diameters and concentrations, but the low wall shear stress area ratio is the largest; the new filter designed in this study has a good filtering and capture efficiency on small-diameter thrombus, and the area ratio of low wall shear stress which is prone to thrombosis is small. The low wall shear stress area of the Denali and Aegisy filters is relatively large, and the risk of thrombosis is high. Based on the above results, it is expected that the new vena cava filter designed in this paper can provide a reference for the design and clinical selection of new filters.
ObjectiveTo discuss the feasibility of establishment of animal model of "functional" bicuspid aortic valve with swine and observe its effect on the wall shear stress inside the aorta. MethodsFour common Shanghai White Swine with body weight between 50 kg to 55 kg were selected. Under general anesthesia and cardiopulmonary bypass, the aortic transverse incision approach was used, continuous suture with 6-0 polypropylene to align the left and right coronary valve leaflets to create a bicuspid valve morphology. After the operation, echocardiography was used to observe the aortic valve morphology and the hemodynamic changes of the aortic valve orifice. The effect on the wall shear stress inside the aorta was studied with 4D-Flow magnetic resonance imaging (MRI). ResultsA total of 4 swine "functional" bicuspid aortic valve models were established, with a success rate of 100.0%. Echocardiography showed that the blood flow velocity of the aortic valve orifice was faster than that before the operation (0.96 m/s vs. 1.80 m/s). 4D-Flow MRI showed abnormally increased wall shear stress and blood flow velocity in the aorta of the animal models. After the surgery, in model animals, the maximal wall shear stress inside the ascending aorta was greater than 1.36 Pa, and the maximum blood flow velocity was greater than 1.4 m/s. ConclusionEstablishment of the animal model of "functional" bicuspid aortic valve in swine is feasible, scientific and reliable. It can be used in researches on evaluating the pathophysiological changes.