摘要:目的:观察超短波治疗对痔术后创面愈合的影响。方法:将100例混合痔术后患者分为治疗组和对照组各40例,治疗组于术后24小时给予超短波治疗和复方紫草油纱条换药,对照组仅给以复方紫草油纱条换药,观察两组创面愈合时间和创面上皮生长速度。结果:治疗组较对照组创面愈合时间更短(Plt;0.01),创面上皮生长速度更快(Plt;0.01)。结论〗:超短波治疗能够加速痔术后创面愈合时间,减少痛苦,疗效确切安全。Abstract: Objective: To observe the clinical efficacy of ultrashort wave on the healing of wound after operation for hemorrhoids. Methods: One hundred cases of disease subjected to operation were divided into the treatment group (50 cases) and the control group (50 cases).The treatment group had been given ultrashort wave 24 hours after operation and Fufangzicaoyousa ointment gauze. The control group had been give Fufangzicaoyousa ointment gauze. Results: The results showed that the woundhealing time was much shorter in the treatment group than in the control group (Plt;0.01), the epidermis growth was much faster in the treatment group than in he control group (Plt;0.01). Conclusion: Ultrashort wave can promote the healing of wound after the operation for hemorrhoids and relieve pain, and it can be externally used safely.
In order to explore the effect of Sipunculus nudus extract (SNE) on skin wound healing in mice and its mechanism, hemostasis effect of SNE was measured, the mouse skin wound model was established by full-thickness excision. The morphological changes of the wound were observed after the treatment with SNE and the healing rate was measured. The changes of wound histology were observed by hematoxylin eosin (HE) staining, Masson staining and transmission electron microscope (TEM). The expression of cell factors and related proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that the SNE possessed hemostatic function. SNE could obviously improve the healing rate of wound in mouse and shorten time of scab removal compared with the none-treatment (NT) group (P < 0.05).The pathological histology analysis results showed complete epidermal regeneration, with remarkable capillary and collagen fiber observed in the SNE group. The expression level of tumor necrosis factor-α (TNF -α), interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) in SNE group was significantly lower than that of the NT group on 7 d (P < 0.05). Moreover, compared with the NT group, the gene expressions level of Smad7 was significantly increased and the level of type II TGF-β receptors (TGF-βRII), collagen I (COL1A1) and α-smooth muscle actin (α-SMA) were significantly reduced in the SNE group on 28 d (P < 0.05), but the difference was not statistically significant compared to Yunnanbaiyao group (PC group) (P > 0.05). These results indicated that SNE possessed obvious activity of accelerating wound healing and inhibiting scar formation, and its mechanism was closely related to hemostatic function, regulation of inflammatory factors, collagen deposition, collagen fiber remodeling and intervening TGF-β/Smads signal pathway. Therefore, SNE may have promising clinical applications in skin wound repair and scar inhibition.
Objective To summary the regulatory effect of mechanical stimulation on macrophage polarization in wound healing, and explore the application prospect of mechanical stimulation in tissue engineering. Methods The related domestic and foreign literature in recent years was extensive reviewed, and the different phenotypes of macrophages and their roles in wound healing, the effect of mechanical stimulation on macrophage polarization and its application in tissue engineering were analyzed. Results Macrophages have functional diversity, with two phenotypes: pro-inflammatory (M1 type) and anti-inflammatory (M2 type), and the cells exhibit different activation phenotypes and play corresponding functions under different stimuli. The mechanical force of different types, sizes, and amplitudes can directly or indirectly guide macrophages to transform into different phenotypes, and then affect tissue repair. This feature can be used in tissue engineering to selectively regulate macrophage polarization. Conclusion Mechanical stimulation plays an vital role in regulating macrophage polarization, but its specific role and mechanism remain ambiguous and need to be further explored.
ObjectiveTo investigate the effects of adipose-derived stem cell released exosomes (ADSC-Exos) on wound healing in diabetic mice.MethodsThe ADSCs were isolated from the adipose tissue donated by the patients and cultured by enzymatic digestion. The supernatant of the 3rd generation ADSCs was used to extract Exos (ADSC-Exos). The morphology of ADSC-Exos was observed by transmission electron microscopy. The membrane-labeled proteins (Alix and CD63) were detected by Western blot, and the particle size distribution was detected by nanoparticle tracking analyzer. The fibroblasts were isolated from the skin tissue donated by the patients and cultured by enzymatic digestion. The 5th generation fibroblasts were cultured with PKH26-labeled ADSC-Exos, and observed by confocal fluorescence microscopy. The effects of ADSC-Exos on proliferation and migration of fibroblasts were observed with cell counting kit 8 (CCK-8) and scratch method. Twenty-four 8-week-old Balb/c male mice were used to prepare a diabetic model. A full-thickness skin defect of 8 mm in diameter was prepared on the back. And 0.2 mL of ADSC-Exos and PBS were injected into the dermis of the experimental group (n=12) and the control group (n=12), respectively. On the 1st, 4th, 7th, 11th, 16th, and 21st days, the wound healing was observed and the wound healing rate was calculated. On the 7th, 14th, and 21st days, the histology (HE and Masson) and CD31 immunohistochemical staining were performed to observe the wound structure, collagen fibers, and neovascularization.ResultsADSC-Exos were the membranous vesicles with clear edges and uniform size; the particle size was 40-200 nm with an average of 102.1 nm; the membrane-labeled proteins (Alix and CD63) were positive. The composite culture observation showed that ADSC-Exos could enter the fibroblasts and promote the proliferation and migration of fibroblasts. Animal experiments showed that the wound healing of the experimental group was significantly faster than that of the control group, and the wound healing rate was significantly different at each time point (P<0.05). Compared with the control group, the wound healing of the experimental group was better. There were more microvessels in the early healing stage, and more deposited collagen fibers in the late healing stage. There were significant differences in the length of wound on the 7th, 14th, and 21st days, the number of microvessels on the 7th and 14th days, and the rate of deposited collagen fibers on the 14th and 21st days between the two groups (P<0.05).ConclusionADSC-Exos can promote the wound healing in diabetic mice by promoting angiogenesis and proliferation and migration of fibroblasts and collagen synthesis.
Compound Huangbai liquid coating agent is a preparation that combines multiple traditional Chinese medicinal herbs and has shown significant efficacy in burn treatment. In recent years, the application of this coating agent in burn treatment has received widespread attention, and it plays a role in promoting wound healing, preventing infection, and reducing patient pain. This article reviews the research progress of compound Huangbai liquid coating agent in burn treatment, explores its mechanism of promoting wound healing, evaluates its current advantages and limitations in burn treatment, and provides scientific basis and theoretical support for its better use in burn treatment.
Objective To review recent advances in the application of hair transplantation in wound healing and scar repair in special areas. Methods An extensive review of the literature on the application of hair transplantation in wound healing and scar repair in special areas was conducted, focusing on cellular functions, molecular mechanisms, and clinical applications. ResultsHair transplantation has been shown to effectively promote wound healing and scar repair in special areas. The underlying mechanisms are complex, but current understanding emphasizes a strong association with hair follicle-associated stem cells (including epidermal stem cells, dermal papilla cells, dermal sheath cells, etc). ConclusionThe application of hair transplantation in wound healing and scar repair in special areas remains in its early stages. Further investigation into its mechanisms of action is essential, and randomized controlled trials are needed to establish its efficacy.
Objective To investigate the effectiveness of tibial transverse transport (TTT) in treating Wagner grade 3-4 type 2 diabetic foot ulcers and analyze dynamic changes in immunoglobulin levels. Methods The clinical data of 68 patients with Wagner grade 3-4 type 2 diabetic foot ulcers treated with TTT between May 2022 and September 2023 was retrospectively analyzed. The cohort included 49 males and 19 females, aged 44-91 years (mean, 67.3 years), with 40 Wagner grade 3 and 28 grade 4 ulcers. The duration of type 2 diabetes ranged from 5 to 23 years, with an average of 10 years. The number of wound healing cases, healing time, amputation cases, death cases, and complications were observed and recorded. Serum samples were collected at 6 key time points [1 day before TTT and 3 days, 7 days (the first day of upward transverse transfer), 14 days (the first day of downward transverse transfer), 21 days (the first day after the end of transfer), 36 days (the first day after the removal of the transfer device)], and the serum immunoglobulin levels were detected by flow cytometry including immunoglobulin G (IgG), IgA, IgM, IgE, complement C3 (C3), C4, immunoglobulin light chain κ (KAP), immunoglobulin light chain λ (LAM). Results All the 68 patients were followed up 6 months. Postoperative pin tract infection occurred in 3 cases and incision infection in 2 cases. Amputation occurred in 5 patients (7.4%) at 59-103 days after operation, and 8 patients (11.8%) died at 49-77 days after operation; the wounds of the remaining 55 patients (80.9%) healed in 48-135 days, with an average of 80 days. There was no recurrence of ulcer, peri-osteotomy fracture, or local skin necrosis during follow-up. The serum immunoglobulin levels of 55 patients with wound healing showed that the levels of IgG and IgM decreased significantly on the 3rd and 7th day after operation compared with those before operation (P<0.05), and gradually returned to the levels before operation after 14 days, and reached the peak on the 36th day. IgA levels continued to decrease with time, and there were significant differences at all time points when compared with those before operation (P<0.05). The level of IgE significantly decreased at 21 days after operation compared with that before operation (P<0.05), while it was higher at other time points than that before operation, but the difference was not significant (P>0.05). The level of C3 showed a clear treatment-related increase, which was significantly higher on the 7th, 14th, and 21st days after operation than that before operation (P<0.05), and the peak appeared on the 14th day. The change trend of C4 level was basically synchronous with that of C3, but the amplitude was smaller, and the difference was significant at 7 and 14 days after operation compared with that before operation (P<0.05). There was no significant difference in KAP/LAM between different time points before and after operation (P>0.05). Conclusion TTT can accelerate wound healing, effectively treat diabetic foot ulcer, and reduce amputation rate, and has definite effectiveness. The potential mechanisms of TTT in the treatment of diabetic foot ulcers include the dynamic regulation of IgG, IgA, IgM, and IgE levels to balance the process of inflammation and repair, and the periodic increase of C3 and C4 levels may promote tissue cleaning, angiogenesis, and anti-infection defense.
OBJECTIVE To investigate clinical effects and possible mechanisms of various growth factors on impaired healing ulcers of patients with diabetic disease. METHODS Seventy-eight patients were divided into three groups; saline control, epidermal growth factor(EGF) experimental group, and platelet-derived wound healing factor (PDWHF) experimental group. General healing conditions, wound closing index, healing rates and histological changes of the patient’s ulcer wound were observed during 1-8 weeks after treatment. RESULTS The wound closing index and healing rate of ulcers were significantly increased in the EGF and PDWHF experimental groups compared with the control group, while the angiogenesis, fibroblast hyperplasia, and collagen deposit were more obvious in EGF and PDWHF experimental groups than that of control group. The promoting effects on wound healing in PDWHF experimental group were better than in EGF group. CONCLUSION It suggests that local application of certain growth factor alone or various growth factors together is an effective method to improve the condition of impaired healing of diabetic ulcers.
A drug vaccarin loaded polymer poly (vinyl alcohol) (PVA)-stilbazole quaternized (SbQ)/Zein was prepared in this study, using co-electrospun method. Then the morphologies and structures of PVA-SbQ/Zein composite nanofibers were observed by scanning electron microscope (SEM) and Fourier transform infrared spectrum (FTIR), respectively. Finally, biocompatibility of PVA-SbQ/Zein nanofibers with drug and without drug was evaluated. Results showed that vaccarin-loaded PVA-SbQ/Zein nanofibers had smooth surface and showed non-toxic to L929 cells. Drug vaccarin could promote cells attachment on nanofibers. The wound healing performance was examined in vivo by rat skin models and histological observations, and PVA-SbQ/Zein/vaccarin nanofibers showed better wound healing performance than petrolatum gauze group.
Objective To prepare nerve growth factor (NGF)-insulin composite gel and observe the effects of NGF-insulin composite gel on deep second degree scald wound healing in diabetic rats. Methods Carbomer 980, NGF (4 000 U), and insulin (800 U) were used to prepare the insulin gel, NGF gel, and NGF-insulin composite gel. The character of NGF-insulin composite gel was observed, and the in vitro drug release was tested. Seventy-five SPF Wistar male rats, weighing 200-250 g, were divided into 5 groups randomly, 15 rats each group: normal control group (group A), diabetes control group (group B), insulin gel treatment group (group C), NGF gel treatment group (group D), and NGF-insulin composite gel treatment group (group E). The type 1 diabetes rat model was established by intraperitoneal injection of Streptozotocin (55 mg/kg) in groups B, C, D, and E, while the rats in group A were injected with the same dose of citric acid and calcium citrate buffer. After modeling success, deep second degree scald wound on the back was made with constant temperature water bath box. Wounds were treated with carbomer blank gel in groups A and B, with insulin composite gel in group C, with NGF gel in group D, and with NGF-insulin composite gel in group E, once a day. At 3, 7, 11, 15, and 21 days after injury, the scald wound healing was observed and healing rate was calculated; the full-thickness skin specimens were harvested from 3 rats of each group for histological and immuohistochemical staining observation. Results The NGF-insulin composite gel was clear and transparent, and had good moisture retention capacity and adhesion; it was easy to apply and clean up. The drug release in vitro lasted more than 24 hours and maintained for 30 days. No rat died during the experiment. At 3 days after injury, wound area did not reduce in all groups; at 7, 11, 15, and 21 days, group E had the highest wound healing rate, and group B had the lowest; significant differences were found between group E and group B and when compared with the other groups (P lt; 0.05). HE staining showed that group E surpassed other groups in the growth of granulation tissue and collagen fiber. Immunohistochemical results showed that the CD34 and proliferating cell nuclear antigen (PCNA) expressed at 3 days, and the number of positive cells increased gradually with time; the microvessel density and PCNA expression were highest in group E and were lowest in group B, showing significant differences when compared with the other groups and between group E and group B (P lt; 0.05). Conclusion NGF-insulin composite gel can improve deep second degree scald wound healing in diabetic rats.