Objective To analyze the characteristics of femoral neck fractures in young and middle-aged adults by means of medical image analysis and fracture mapping technology to provide reference for fracture treatment. Methods A clinical data of 159 young and middle-aged patients with femoral neck fractures who were admitted between December 2018 and July 2019 was analyzed. Among them, 99 patients were male and 60 were female. The age ranged from 18 to 60 years, with an average age of 47.9 years. There were 77 cases of left femoral neck fractures and 82 cases of right sides. Based on preoperative X-ray film and CT, the fracture morphology was observed and classified according to the Garden classification standard and Pauwels’ angle, respectively. Mimics19.0 software was used to reconstruct the three-dimensional models of femoral neck fracture, measure the angle between the fracture plane and the sagittal plane of the human body, and observe whether there was any defect at the fracture end and its position on the fracture surface. Through reconstruction, virtual reduction, and image overlay, the fracture map was established to observe the fracture line and distribution. Results According to Garden classification standard, there were 6 cases of type Ⅰ, 61 cases of type Ⅱ, 54 cases of type Ⅲ, and 38 cases of type Ⅳ. According to the Pauwels’ angle, there were 12 cases of abduction type, 78 cases of intermediate type, and 69 cases of adduction type. The angle between fracture plane and sagittal plane of the human body ranged from –39° to +30°. Most of them were Garden type Ⅱ, Ⅳ and Pauwels intermediate type. The fracture blocks were mainly in the form of a triangle with a long base and mainly distributed below the femoral head and neck junction area. Twenty-six cases (16.35%) were complicated with bone defects, which were mostly found in Garden type Ⅲ, Ⅳ, and Pauwels intermediate type, located at the back of femoral neck and mostly involved 2-4 quadrants. The fracture map showed that the fracture line of the femoral neck was distributed annularly along the femoral head and neck junction. The fracture line was dense above the femoral neck and scattered below, involving the femoral calcar. Conclusion The proportion of displaced fractures (Garden type Ⅲ, Ⅳ) and unstable fractures (Pauwels intermediate type, adduction type) is high in femoral neck fractures in young and middle-aged adults, and comminuted fractures and bone defects further increase the difficulty of treatment. In clinical practice, it is necessary to choose treatment plan according to fracture characteristics. Anatomic reduction and effective fixation are the primary principles for the treatment of femoral neck fracture in young and middle-aged adults.
ObjectiveTo summarize the research progress of femoral neck system (FNS) in the treatment of femoral neck fracture in young and middle-aged patients. Methods The literature on FNS at home and abroad in recent years was extensively reviewed, and the results of mechanical and clinical studies on FNS were summarized based on clinical experience. Results FNS has good mechanical stability, which can reduce complications such as femoral neck shortening, internal fixation failure, and varus caused by mechanical instability. At present, FNS is mainly selected for comparison with cannulated compression screws and dynamic hip screws in clinical research. The results show that FNS has the advantages of minimally invasive, short operation time, less intraoperative fluoroscopy, earlier postoperative weight-bearing and fracture healing, and better hip function recovery. Conclusion As a new internal fixator, FNS has achieved satisfactory results in the current research. FNS has good mechanical advantages, which is beneficial to fracture healing and the recovery of hip joint function after operation. However, whether FNS can reduce the incidence of nonunion and osteonecrosis of the femoral head remains to be further clarified.