1. |
Hamel C. Retinitis pigmentosa[J]. Orphanet J Rare Dis, 2006, 11:40.
|
2. |
Lai Y, Yue Y, Duan D. Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or=8.2 kb[J]. Mol Ther, 2010, 18:75-79.
|
3. |
Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness[J]. Nature Genet, 2001, 28:92-95.
|
4. |
Acland GM, Aguirre GD, Bennett J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness[J]. Mol Ther, 2005, 12:1072-1082.
|
5. |
Weber M, Rabinowitz J, Provost N, et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery[J]. Mol Ther, 2003, 7:774-781.
|
6. |
Le Meur G, Stieger K, Smith AJ, et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium[J]. Gene Ther, 2007, 14:292-303.
|
7. |
Bennicelli J, Wright JF, Komaromy A, et al. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer[J].Mol Ther, 2008, 16:458-465.
|
8. |
Inglehearn CF, Keen TJ, Bashir R, et al. A completed screen for mutations of the rhodopsin gene in a panel of patients with autosomal dominant retinitis pigmentosa[J]. Hum Mol Genet, 1992, 1:41-45.
|
9. |
Pang JJ, Dai X, Boye SE, et al. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa[J]. Mol Ther, 2011, 19:234-242.
|
10. |
Yao J, Jia L, Khan N, et al. Caspase inhibition with XIAP as an adjunct to AAV vector gene-replacement therapy:improving efficacy and prolonging the treatment window[J]. PLoS One, 2012, 7:37197[2012-05-16].http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0037197.
|
11. |
Petit L, Lhériteau E, Weber M, et al. Restoration of vision in the PDE6β-deficient dog, a large animal model of rod-cone dystrophy[J].Mol Ther, 2012, 20:2019-2130.
|
12. |
Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis[J]. N Engl J Med, 2008, 358:2240-2248.
|
13. |
Kiang AS, Palfi A, Ader M, et al.Toward a gene therapy for dominant disease:validation of an RNA interference-based mutation-independent approach[J]. Mol Ther, 2005, 12:555-561.
|
14. |
Gorbatyuk M, Justilien V, Liu J, et al.Suppression of mouse RHOdopsin expression in vivo by AAV mediated siRNA delivery[J]. Vision Res, 2007, 47:1202-1208.
|
15. |
Millington-Ward S, Chadderton N, O'Reilly M, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa[J]. Mol Ther, 2011, 19:642-649.
|
16. |
Mao H, Gorbatyuk MS, Rossmiller B, et al.Long-term rescue of retinal structure and function by RHOdopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice[J]. Hum Gene Ther, 2012, 23:356-366.
|
17. |
Hammann C, Westhof E.Seaching genomes for ribozymes and riboswitches[J]. Genome Biology, 2007, 8:210.
|
18. |
Drenser KA, Timmers AM, Hauswirth WW, et al.Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 1998, 39:681-689.
|
19. |
O'Neill B, Millington-Ward S, O'Reilly M, et al.Ribozyme-based therapeutic approaches for autosomal dominant retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2000, 41:2863-2869.
|
20. |
Shaw LC, Skold A, Wong F, et al. An allele-specific hammerhead ribozyme gene therapy for a porcine model of autosomal dominant retinitis pigmentosa[J].Mol Vis, 2001, 7:6-13.
|
21. |
Gorbatyuk M, Justilien V, Liu J, et al. Preservation of Photoreceptor morphology and function in P23H rats using an allele independent ribozyme[J]. Exp Eye Res, 2007, 84:44-52.
|
22. |
Sullivan JM, Pietras KM, Shin BJ, et al. Hammerhead ribozymes designed to cleave all human rod opsin mRNAs which cause autosomal dominant retinitis pigmentosa[J]. Mol Vis, 2002, 8:102-113.
|
23. |
Gorbatyuk M, Justilien V, Liu J, et al. Suppression of mouse RHOdopsin expression in vivo by AAV mediated siRNA delivery[J]. Vision Res, 2007, 47:1202-1208.
|
24. |
Chakraborty D, Whalen P, Lewin AS, et al.In vitro analysis of ribozyme-mediated knockdown of an ADRP associated RHOdopsin mutation[J]. Adv Exp Med Biol, 2008, 613:97-106.
|
25. |
Leonard KC, Petrin D, Coupland SG, et al. XIAP protection of photoreceptors in animal models of retinitis pigmentosa[J/OL].PLoS One, 2007, 2:314[2007-03-21].http://dx.plos.org/10.1371/journal.pone.0000314.
|
26. |
Comitato A, Sanges D1, Rossi A, et al. Activation of Bax in three models of retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2014, 55:3555-3562.
|
27. |
Nir I, Kedzierski W, Chen J, et al. Expression of Bcl-2 protects against photoreceptor degeneration in retinal degeneration slow (rds) mice[J].J Neurosci, 2000, 20:2150-2154.
|
28. |
Tsang SH, Chen J, Kjeldbye H, et al. Retarding photoreceptor degeneration in Pdegtm1/Pdegtml mice by an apoptosis suppressor gene[J]. Invest Ophthalmol Vis Sci, 1997, 38:943-950.
|
29. |
Cayouette M, Behn D, Sendtner M, et al. Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse[J]. J Neurosci, 1998, 18:9282-9293.
|
30. |
Liang FQ, Aleman TS, Dejneka NS, et al. Long-term protection of retinal structure but not function using RAAV CNTF in animal models of retinitis pigmentosa[J]. Mol Ther, 2001, 4:461-472.
|
31. |
Bok D, Yasumura D, Matthes MT, et al.Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation[J]. Exp Res, 2002, 74:719-735.
|
32. |
Rhee KD, Ruiz A, Duncan JL, et al.Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2007, 48:1389-1400.
|
33. |
McGee Sanftner LH, Abel H, Hauswirth WW, et al.Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa[J].Mol Ther, 2001, 4:622-629.
|
34. |
Lawrence JM, Keegan DJ, Muir EM, et al.Transplantation of Schwann cell line clones secreting GDNF or BDNF into the retinas of dystrophic Royal College of Surgeons rats[J].Invest Ophthalmol Vis Sci, 2004, 45:267-274.
|
35. |
Andrieu-Soler C, Aubert-Pouessel A, Doat M, et al. Intravitreous injection of PLGA micrespheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse[J].Mol Vis, 2005, 11:1002-1011.
|
36. |
Buch PK, MacLaren RE, Duran Y, et al.In contrast to AAV-mediated CNTF expression, AAV-mediated GDNF expression enhances gene replacement therapy in rodent models of retinal degeneration[J]. Mol Ther, 2006, 14:700-709.
|
37. |
Lau D, McGee LH, Zhou S, et al.Retinal degeneration is slowed in transgenic rats by AAV-mediated delivery of FGF-2[J].Invest Ophthalmol Vis Sci, 2000, 41:3622-3633.
|
38. |
Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis[J]. N Engl J Med, 2008, 358:2231-2239.
|
39. |
Cideciyan AV, Hauswirth WW, Aleman TS, et al. Vision 1 year after gene therapy for Leber's congenital amaurosis[J]. N Engl J Med, 2009, 361:725-727.
|
40. |
Simonelli F, Maguire AM, Testa F, et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration[J]. Mol Ther, 2010, 18:643-650.
|
41. |
Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis:a phase 1 dose-escalation trial[J]. Lancet, 2009, 374:1597-1605.
|
42. |
Cideciyan AV, Hauswirth WW, Aleman TS, et al. Human RPE65 gene therapy for Leber congenital amaurosis:persistence of early visual improvements and safety at 1 year[J]. Hum Gene Ther, 2009, 20:999-1004.
|
43. |
Simonelli F, Maguire AM, Testa F, et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration[J]. Mol Ther, 2010, 18:643-650.
|