1. |
Jones MK, Lu B, Girman S, et al. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases[J]. Prog Retin Eye Res, 2017, 58(5): 1-27. DOI: 10.1016/j.preteyeres.2017.01.004.
|
2. |
Khan KN, Mahroo OA, Khan RS, et al. Differentiating drusen:drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes[J]. Prog Retin Eye Res, 2016, 53: 70-106. DOI: 10.1016/j.preteyeres.2016.04.008.
|
3. |
Kivinen N. The role of autophagy in age-related maculardegeneration (AMD) - studies into the pathogenesis of AMD[J]. Acta Ophthalmol, 2018, 96(5): 531-532. DOI: 10.1111/aos.13772.
|
4. |
Ban N, Lee TJ, Sene A, et al. Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss[J/OL]. JCI Insight, 2018, 3(17): 120824[2019-09-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171801/. DOI: 10.1172/jci.insight.120824.
|
5. |
Bergen AA, Arya S, Koster C, et al. On the origin of proteins in human drusen: the meet, greet and stick hypothesis[J]. Prog Retin Eye Res, 2019, 70: 55-84. DOI: 10.1016/j.preteyeres.2018.12.003.
|
6. |
Farnoodian M, Sorenson CM, Sheibani N. Negative regulators of angiogenesis, ocular vascular homeostasis, and pathogenesis and treatment of exudative AMD[J]. J Ophthalmic Vis Res, 2018, 13(4): 470-486. DOI: 10.4103/jovr.jovr_67_18.
|
7. |
Nowak JZ. AMD--the retinal disease with an unprecised etiopathogenesis: in search of effective therapeutics[J]. Acta Pol Pharm, 2014, 71(6): 900-916.
|
8. |
van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151-164. DOI: 10.1002/path.4266.
|
9. |
Golestaneh N, Chu Y, Xiao YY, et al. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration[J/OL]. Cell Death Dis, 2017, 8(1): 2537[2017-01-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386365/. DOI: 10.1038/cddis.2016.453.
|
10. |
Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. DOI: 10.1016/S0140-6736(18)31550-2.
|
11. |
Cislo-Pakuluk A, Marycz K. A promising tool in retina regeneration: current perspectives and challenges when using mesenchymal progenitor stem cells in veterinary and human ophthalmological applications[J]. Stem Cell Rev, 2017, 13(5): 598-602. DOI: 10.1007/s12015-017-9750-4.
|
12. |
Decembrini S, Martin C, Sennlaub F, et al. Cone genesis tracing by the Chrnb4-EGFP mouse line: evidences of cellular material fusion after cone precursor transplantation[J]. Mol Ther, 2017, 25(3): 634-653. DOI: 10.1016/j.ymthe.2016.12.015.
|
13. |
Canto-Soler V, Flores-Bellver M, Vergara MN. Stem cell sources and their potential for the treatment of retinal degenerations[J]. Invest Ophthalmol Vis Sci, 2016, 57(5): 1-9. DOI: 10.1167/iovs.16-19127.
|
14. |
Kirchhof B. Cell transplantation in age-related macular degeneration[J]. Klin Monbl Augenheilkd, 2017, 234(9): 1082-1087. DOI: 10.1055/s-0043-111802.
|
15. |
Bracha P, Moore NA, Ciulla TA. Induced pluripotent stem cell-based therapy for age-related macular degeneration[J]. Expert Opin Biol Ther, 2017, 17(9): 1113-1126. DOI: 10.1080/14712598.2017.1346079.
|
16. |
Bennis A, Jacobs JG, Catsburg LAE, et al. Stem cell derived retinal pigment epithelium: the role of pigmentation as maturation marker and gene expression profile comparison with human endogenous retinal pigment epithelium[J]. Stem Cell Rev, 2017, 13(5): 659-669. DOI: 10.1007/s12015-017-9754-0.
|
17. |
Bennis A, Ten Brink JB, Moerland PD, et al. Comparative gene expression study and pathway analysis of the human iris- and the retinal pigment epithelium[J/OL]. PLoS One, 2017, 12(8): 0182983[2017-08-21]. https://doi.org/10.1371/journal.pone.0182983. DOI: 10.1371/journal.pone.0182983.
|
18. |
Kharitonov AE, Surdina AV, Lebedeva OS, et al. Possibilities for using pluripotent stem cells for restoring damaged eye retinal pigment epithelium[J]. Acta Naturae, 2018, 10(3): 30-39. DOI: 10.32607/20758251-2018-10-3-30-39.
|
19. |
Sugita S, Iwasaki Y, Makabe K, et al. Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models[J]. Stem Cell Reports, 2016, 7(4): 635-648. DOI: 10.1016/j.stemcr.2016.08.010.
|
20. |
Borsch O, Santos-Ferreira T, Ader M. Photoreceptor transplantation into the degenerative retina[J]. Klin Monbl Augenheilkd, 2017, 234(3): 343-353. DOI: 10.1055/s-0043-104421.
|
21. |
Hu Q, Chen R, Teesalu T, et al. Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins[J]. Stem Cells Transl Med, 2014, 3(12): 1526-1534. DOI: 10.5966/sctm.2014-0038.
|
22. |
Moreno AM, Fu X, Zhu J, et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation[J]. Mol Ther, 2018, 26(7): 1818-1827. DOI: 10.1016/j.ymthe.2018.04.017.
|
23. |
Hunt NC, Hallam D, Karimi A, et al. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development[J]. Acta Biomater, 2017, 49(2): 329-343. DOI: 10.1016/j.actbio.2016.11.016.
|
24. |
Lipecz A, Miller L, Kovacs I, et al. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions[J]. Geroscience, 2019, 41(6): 813-845. DOI: 10.1007/s11357-019-00138-3.
|
25. |
Gagliardi G, Ben M'Barek K, Chaffiol A, et al. Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids[J]. Stem Cell Reports, 2018, 11(3): 665-680. DOI: 10.1016/j.stemcr.2018.07.005.
|
26. |
Amram B, Cohen-Tayar Y, David A, et al. The retinal pigmented epithelium - from basic developmental biology research to translational approaches[J]. Int J Dev Biol, 2017, 61(3-4-5): 225-234. DOI: 10.1387/ijdb.160393ra.
|
27. |
Forest DL, Johnson LV, Clegg DO. Cellular models and therapies for age-related macular degeneration[J]. Dis Model Mech, 2015, 8(5): 421-427. DOI: 10.1242/dmm.017236.
|
28. |
Nishiguchi KM, Fujita K, Tokashiki N, et al. Retained plasticity and substantial recovery of rod-mediated visual acuity at the visual cortex in blind adult mice with retinal dystrophy[J]. Mol Ther, 2018, 26(10): 2397-2406. DOI: 10.1016/j.ymthe.2018.07.012.
|
29. |
Yanagi Y, Foo VHX, Yoshida A. Asian age-related macular degeneration: from basic science research perspective[J]. Eye(Lond), 2019, 33(1): 34-49. DOI: 10.1038/s41433-018-0225-x.
|
30. |
Holan V, Hermankova B, Kossl J. Perspectives of stem cell-based therapy for age-related retinal degenerative diseases[J]. Cell Transplant, 2017, 26(9): 1538-1541. DOI: 10.1177/0963689717721227.
|
31. |
Slembrouck-Brec A, Rodrigues A, Rabesandratana O, et al. Reprogramming of adult retinal Müller glial cells into human-induced pluripotent stem cells as an efficient source of retinal cells [J/OL]. Stem Cells Int, 2019, 2019: 7858796[2019-07-15]. https://doi.org/10.1155/2019/7858796. DOI: 10.1155/2019/7858796.
|
32. |
Gasparini SJ, Llonch S, Borsch O, et al. Transplantation of photoreceptors into the degenerative retina:current state and future perspectives[J]. Prog Retin Eye Res, 2019, 69: 1-37. DOI: 10.1016/j.preteyeres.2018.11.001.
|
33. |
Puertas-Neyra K, Usategui-Martín R, Coco RM, et al. Intravitreal stem cell paracrine properties as a potential neuroprotective therapy for retinal photoreceptor neurodegenerative diseases[J]. Neural Regen Res, 2020, 15(9): 1631-1638. DOI: 10.4103/1673-5374.276324.
|
34. |
Kuroda T, Ando S, Takeno Y, et al. Robust induction of retinal pigment epithelium cells from human induced pluripotent stem cells by inhibiting FGF/MAPK signaling[J/OL]. Stem Cell Res, 2019, 39: 101514[2019-08-01]. https://doi.org/10.1016/j.scr.2019.101514. DOI: 10.1016/j.scr.2019.101514.
|
35. |
Léveillard T, Philp NJ, Sennlaub F. Is retinal metabolic dysfunction at the center of the pathogenesis of age-related macular degeneration?[J]. Int J Mol Sci, 2019, 20(3): 762. DOI: 10.3390/ijms20030762.
|