1. |
Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993, 329(14): 977-986. DOI: 10.1056/NEJM199309303291401.
|
2. |
Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, Genuth S, et al. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy[J]. N Engl J Med, 2000, 342(6): 381-389. DOI: 10.1056/NEJM200002103420603.
|
3. |
Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease[J]. Nature, 2019, 571(7766): 489-499. DOI: 10.1038/s41586-019-1411-0.
|
4. |
Wu C, Morris JR. Genes, genetics, and epigenetics: a correspondence[J]. Science, 2001, 293(5532): 1103-1105. DOI: 10.1126/science.293.5532.1103.
|
5. |
Li B, Carey M, Workman JL. The role of chromatin during transcription[J]. Cell, 2007, 128(4): 707-719. DOI: 10.1016/j.cell.2007.01.015.
|
6. |
Moore LD, Le T, Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38. DOI: 10.1038/npp.2012.112.
|
7. |
Becker PB, Horz W. ATP-dependent nucleosome remodeling[J]. Annu Rev Biochem, 2002, 71: 247-273. DOI: 10.1146/annurev.biochem.71.110601.135400.
|
8. |
Miao F, Chen Z, Genuth S, et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes[J]. Diabetes, 2014, 63(5): 1748-1762. DOI: 10.2337/db13-1251.
|
9. |
Kadiyala CS, Zheng L, Du Y, et al. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC)[J]. J Biol Chem, 2012, 287(31): 25869-25880. DOI: 10.1074/jbc.M112.375204.
|
10. |
Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J]. J Cell Biochem, 2010, 110(6): 1306-1313. DOI: 10.1002/jcb.22644.
|
11. |
Mortuza R, Chen S, Feng B, et al. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway [J/OL]. PLoS One, 2013, 8(1): 54514[2013-01-16]. https://assays.cancer.gov/CPTAC-1240. DOI: 10.1371/journal.pone.0054514.
|
12. |
Li P, Zhang L, Zhou C, et al. Sirt 1 activator inhibits the AGE-induced apoptosis and p53 acetylation in human vascular endothelial cells[J]. J Toxicol Sci, 2015, 40(5): 615-624. DOI: 10.2131/jts.40.615.
|
13. |
Chang M, Zhang B, Tian Y, et al. AGEs decreased SIRT3 expression and SIRT3 activation protected ages-induced EPCs' dysfunction and strengthened anti-oxidant capacity[J]. Inflammation, 2017, 40(2): 473-485. DOI: 10.1007/s10753-016-0493-1.
|
14. |
Mortuza R, Feng B, Chakrabarti S. SIRT1 reduction causes renal and retinal injury in diabetes through endothelin 1 and transforming growth factor beta1[J]. J Cell Mol Med, 2015, 19(8): 1857-1867. DOI: 10.1111/jcmm.12557.
|
15. |
Wang C, You Q, Cao X, et al. Micro RNA-19a suppresses interleukin-10 in peripheral B cells of patients with diabetic retinopathy[J]. Am J Transl Res, 2017, 9(3): 1410-1417.
|
16. |
Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Nrf2-mediated glutamate-cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression[J]. Free Radic Biol Med, 2014, 75: 129-139. DOI: 10.1016/j.freeradbiomed.2014.07.001.
|
17. |
Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7256-7265. DOI: 10.1167/iovs.14-15193.
|
18. |
Zhong Q, Kowluru RA. Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 244-250. DOI: 10.1167/iovs.12-10854.
|
19. |
Agardh E, Lundstig A, Perfilyev A, et al. Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy[J]. BMC Med, 2015, 13: 182. DOI: 10.1186/s12916-015-0421-5.
|
20. |
Maghbooli Z, Hossein-Nezhad A, Larijani B, et al. Global DNA methylation as a possible biomarker for diabetic retinopathy[J]. Diabetes Metab Res Rev, 2015, 31(2): 183-189. DOI: 10.1002/dmrr.2584.
|
21. |
Mishra M, Kowluru RA. DNA methylation-a potential source of mitochondria DNA base mismatch in the development of diabetic retinopathy[J]. Mol Neurobiol, 2019, 56(1): 88-101. DOI: 10.1007/s12035-018-1086-9.
|
22. |
Duraisamy AJ, Mishra M, Kowluru A, et al. Epigenetics and regulation of oxidative stress in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4831-4840. DOI: 10.1167/iovs.18-24548.
|
23. |
Kowluru RA. Retinopathy in a diet-induced type 2 diabetic rat model and role of epigenetic modifications[J]. Diabetes, 2020, 69(4): 689-698. DOI: 10.2337/db19-1009.
|
24. |
Mishra M, Kowluru RA. Epigenetic modification of mitochondrial DNA in the development of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5133-5142. DOI: 10.1167/iovs.15-16937.
|
25. |
Mishra M, Kowluru RA. The role of DNA methylation in the metabolic memory phenomenon associated with the continued progression of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5748-5757. DOI: 10.1167/iovs.16-19759.
|
26. |
Kowluru RA, Mohammad G. Epigenetics and mitochondrial stability in the metabolic memory phenomenon associated with continued progression of diabetic retinopathy[J]. Sci Rep, 2020, 10(1): 6655. DOI: 10.1038/s41598-020-63527-1.
|
27. |
Kowluru RA, Shan Y, Mishra M. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy[J]. Lab Invest, 2016, 96(10): 1040-1049. DOI: 10.1038/labinvest.2016.78.
|
28. |
Kowluru RA, Shan Y. Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(5): 955-962. DOI: 10.1007/s00417-017-3594-0.
|
29. |
Mohammad G, Kowluru RA. Homocysteine disrupts balance between MMP-9 and its tissue inhibitor in diabetic retinopathy: the role of DNA methylation[J]. Int J Mol Sci, 2020, 21(5): 1771. DOI: 10.3390/ijms21051771.
|
30. |
Duraisamy AJ, Mishra M, Kowluru RA. Crosstalk between histone and DNA methylation in regulation of retinal matrix metalloproteinase-9 in diabetes[J]. Invest Ophthalmol Vis Sci, 2017, 58(14): 6440-6448. DOI: 10.1167/iovs.17-22706.
|
31. |
Zampetaki A, Willeit P, Burr S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes[J]. Diabetes, 2016, 65(1): 216-227. DOI: 10.2337/db15-0389.
|
32. |
Barutta F, Bruno G, Matullo G, et al. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study[J]. Acta Diabetol, 2017, 54(2): 133-139. DOI: 10.1007/s00592-016-0915-4.
|
33. |
Santos-Bezerra DP, Santos AS, Guimaraes GC, et al. Micro-RNAs 518d-3p and 618 are upregulated in individuals with type 1 diabetes with multiple microvascular complications[J]. Front Endocrinol (Lausanne), 2019, 10: 385. DOI: 10.3389/fendo.2019.00385.
|
34. |
Yan L, Lee S, Lazzaro DR, et al. Single and compound knock-outs of microRNA (miRNA)-155 and its angiogenic gene target ccn1 in mice alter vascular and neovascular growth in the retina via resident microglia[J]. J Biol Chem, 2015, 290(38): 23264-23281. DOI: 10.1074/jbc.M115.646950.
|
35. |
Gong Q, Xie J, Liu Y, et al. Differentially expressed micrornas in the development of early diabetic retinopathy [J/OL]. J Diabetes Res, 2017, 2017: 4727942[2017-06-15]. http://europepmc.org/article/MED/28706953. DOI: 10.1155/2017/4727942.
|
36. |
Yuan Q, Sun T, Ye F, et al. MicroRNA-124-3p affects proliferation, migration and apoptosis of bladder cancer cells through targeting AURKA[J]. Cancer Biomark, 2017, 19(1): 93-101. DOI: 10.3233/CBM-160427.
|
37. |
Jiang Q, Lyu XM, Yuan Y, et al. Plasma miR-21 expression: an indicator for the severity of type 2 diabetes with diabetic retinopathy [J/OL]. Biosci Rep, 2017, 37(2): BSR20160589[2017-04-28]. http://europepmc.org/article/MED/28108673. DOI: 10.1042/BSR20160589.
|
38. |
Lu JM, Zhang ZZ, Ma X, et al. Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy [J/OL]. Exp Eye Res, 2020, 190: 107886[2019-11-21]. https://linkinghub.elsevier.com/retrieve/pii/S0014-4835(18)30390-7. DOI: 10.1016/j.exer.2019.107886.
|
39. |
Yan B, Yao J, Liu JY, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA[J]. Circ Res, 2015, 116(7): 1143-1156. DOI: 10.1161/CIRCRESAHA.116.305510.
|
40. |
Shan K, Liu C, Liu BH, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17): 1629-1642. DOI: 10.1161/CIRCULATIONAHA.117.029004.
|
41. |
Khan M, Walters LL, Li Q, et al. Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma[J]. Lab Invest, 2015, 95(11): 1278-1290. DOI: 10.1038/labinvest.2015.104.
|
42. |
Huether R, Dong L, Chen X, et al. The landscape of somatic mutations in epigenetic regulators across 1, 000 paediatric cancer genomes [J/OL]. Nat Commun, 2014, 5: 3630[2014-04-08]. http://europepmc.org/article/MED/24710217. DOI: 10.1038/ncomms4630.
|
43. |
Choy KW, Pang CP, Yu CB, et al. Loss of heterozygosity and mutations are the major mechanisms of RB1 gene inactivation in Chinese with sporadic retinoblastoma[J]. Hum Mutat, 2002, 20(5): 408. DOI: 10.1002/humu.9077.
|
44. |
Ayari-Jeridi H, Moran K, Chebbi A, et al. Mutation spectrum of RB1 gene in unilateral retinoblastoma cases from Tunisia and correlations with clinical features [J/OL]. PLoS One, 2015, 10(1): 0116615[2015-01-20]. http://europepmc.org/article/MED/25602518. DOI: 10.1371/journal.pone.0116615.
|
45. |
Du J, Johnson LM, Jacobsen SE, et al. DNA methylation pathways and their crosstalk with histone methylation[J]. Nat Rev Mol Cell Biol, 2015, 16(9): 519-532. DOI: 10.1038/nrm4043.
|