- 1. Peking University Third Hospital, Peking University Eye Center, Beijing 100191, China;
- 2. Third Clinical Medical College of Peking University, Beijing 10083, China;
Diabetic retinopathy (DR) is one of the most common and serious diabetic complications, which is the main cause of vision loss in adults. The specific vascular and neuropathology mechanism of DR is not clear. It has been demonstrated that Inflammatory reaction might be take effects in the development and progression of DR. Monocyte chemoattractant protein-1 (MCP-1), as an important chemokine in the inflammatory response process, promotes chemotactic and activating factors, destroys the blood-retinal barrier, causes retinal vascular disease, and activates microglia, which is related to the severity of the disease. With further research on MCP-1, it is possible to use chemokines and their receptors as target cells to control or slow down the progression of DR by reducing or inhibiting the production of MCP-1 in diabetic patients in the early stages of the disease. This study can provide new ideas and new methods about preventing and treating DR.
Citation: Jing Dalan, Su Jie, Wang Wei. Research progress in the role of monocyte chemoattractant protein-1 in diabetic retinopathy. Chinese Journal of Ocular Fundus Diseases, 2021, 37(1): 77-81. doi: 10.3760/cma.j.cn511434-20191204-00401 Copy
1. | Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J/OL]. Eye Vis (Lond), 2015, 2: 17[2015-09-30]. https://pubmed.ncbi.nlm.nih.gov/26605370/. DOI: 10.1186/s40662-015-0026-2. |
2. | Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications[J]. J Clin Endocrinol Metab, 2009, 94(9): 3171-3182. DOI: 10.1210/jc.2008-2534. |
3. | Koleva-Georgieva DN, Sivkova NP, Terzieva D. Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy[J]. Folia Med (Plovdiv), 2011, 53(2): 44-50. DOI: 10.2478/v10153-010-0036-8. |
4. | Adamis AP. Is diabetic retinopathy an inflammatory disease?[J]. Br J Ophthalmol, 2002, 86(4): 363-365. DOI: 10.1136/bjo.86.4.363. |
5. | Joussen AM, Poulaki V, Mitsiades N, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression[J]. FASEB J, 2002, 16(3): 438-440. DOI: 10.1096/fj.01-0707fje. |
6. | Zheng L, Howell SJ, Hatala DA, et al. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy[J]. Diabetes, 2007, 56(2): 337-345. DOI: 10.2337/db06-0789. |
7. | 刘巨平, 李筱荣. 糖尿病视网膜病变: 一种非可控性炎症[J]. 中华实验眼科杂志, 2014, 32(1): 94-96. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.019.Liu JP, Li XR. Diabetic retinopathy: a nonresolving inflammation[J]. Chin J Exp Ophthalmol, 2014, 32(1): 94-96. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.019. |
8. | Taub DD. Chemokine-leukocyte interactions. The voodoo that they do so well[J]. Cytokine & Growth Factor Rev, 1996, 7(4): 355-376. DOI: 10.1016/s1359-6101(97)89237-4. |
9. | Matsushima K, Larsen CG, DuBois GC, et al. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line[J]. J Exp Med, 1989, 169(4): 1485-1490. DOI: 10.1084/jem.169.4.1485. |
10. | Van Coillie E, Van Damme J, Opdenakker G. The MCP/eotaxin subfamily of CC chemokines[J]. Cytokine Growth Factor Rev, 1999, 10(1): 61-86. DOI: 10.1016/s1359-6101(99)00005-2. |
11. | Yoshimura T, Leonard EJ. Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes[J]. J Immunol, 1990, 145(1): 292-297. |
12. | Weber KS, Klickstein LB, Weber C. Specific activation of leukocyte beta2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the alpha subunit cytoplasmic domains[J]. Mol Biol Cell, 1999, 10(4): 861-873. DOI: 10.1091/mbc.10.4.861. |
13. | Jiang Y, Beller DI, Frendl G, et al. Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes[J]. J Immunol, 1992, 148(8): 2423-2348. |
14. | Leonard EJ, Skeel A, Yoshimura T. Biological aspects of monocyte chemoattractant protein-1 (MCP-1)[J]. Adv Exp Med Biol, 1991, 305: 57-64. DOI: 10.1007/978-1-4684-6009-4_7. |
15. | Craig MJ, Loberg RD. CCL2 (monocyte chemoattractant protein-1) in cancer bone metastases[J]. Cancer Metastasis Rev, 2006, 25(4): 611-619. DOI: 10.1007/s10555-006-9027-x. |
16. | Wang Q, Ren J, Morgan S, et al. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm[J/OL]. PLoS One, 2014, 9(3): e92053[2014-03-14]. https://pubmed.ncbi.nlm.nih.gov/24632850/. DOI: 10.1371/journal.pone.0092053. |
17. | Schepers A, Eefting D, Bonta PI, et al. Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and in vivo[J]. Arterioscler Thromb Vasc Biol, 2006, 26(9): 2063-2069. DOI: 10.1161/01.ATV.0000235694.69719.e2. |
18. | Ohta M, Kitadai Y, Tanaka S, et al. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas[J]. Int J Oncol, 2003, 22(4): 773-778. |
19. | O'Hayre M, Salanga CL, Handel TM, et al. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment[J]. Biochem J, 2008, 409(3): 635-649. DOI: 10.1042/BJ20071493. |
20. | Yamamoto T, Eckes B, Mauch C, et al. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 alpha loop[J]. J Immunol, 2000, 164(12): 6174-6179. DOI: 10.4049/jimmunol.164.12.6174. |
21. | Takaishi H, Taniguchi T, Takahashi A, et al. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells[J]. Biochem Biophys Res Commun, 2003, 305(1): 122-128. DOI: 10.1016/s0006-291x(03)00712-5. |
22. | Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease[J]. Curr Pharm Des, 2008, 14(10): 979-986. DOI: 10.2174/138161208784139684. |
23. | Crane IJ, Wallace CA, McKillop-Smith S, et al. Control of chemokine production at the blood-retina barrier[J]. Immunology, 2000, 101(3): 426-433. DOI: 10.1046/j.0019-2805.2000.01105.x. |
24. | Huang H, Jing G, Wang JJ, et al. ATF4 is a novel regulator of MCP-1 in microvascular endothelial cells[J/OL]. J Inflamm (Lond), 2015, 12: 31[2015-04-17]. https://pubmed.ncbi.nlm.nih.gov/25914608/. DOI: 10.1186/s12950-015-0076-1. |
25. | 陈慷, 胡世兴, 邓新国, 等. 单核细胞趋化蛋白-1在早期糖尿病大鼠视网膜中的表达及意义[J]. 眼科研究, 2005, 23(1): 23-25. DOI: 10.3760/cma.j.issn.2095-0160.2005.01.007.Chen K, Hu SX, Deng XG, et al. Expression of monocyte chemoattractant protein-1 in retina of early diabetic rats and its significance[J]. Chin Ophthal Res, 2005, 23(1): 23-25. DOI: 10.3760/cma.j.issn.2095-0160.2005.01.007. |
26. | Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina[J]. Prog Retin Eye Res, 2006, 25(4): 397-424. DOI: 10.1016/j.preteyeres.2006.05.003. |
27. | Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group[J]. Diabetes, 1998, 47(5): 815-820. DOI: 10.2337/diabetes.47.5.815. |
28. | Harada C, Okumura A, Namekata K, et al. Role of monocyte chemotactic protein-1 and nuclear factor kappa B in the pathogenesis of proliferative diabetic retinopathy[J]. Diabetes Res Clin Pract, 2006, 74(3): 249-256. DOI: 10.1016/j.diabres.2006.04.017. |
29. | Carr MW, Roth SJ, Luther E, et al. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant[J]. Proc Natl Acad Sci USA, 1994, 91(9): 3652-3656. DOI: 10.1073/pnas.91.9.3652. |
30. | Wang T, Dai H, Wan N, et al. The role for monocyte chemoattractant protein-1 in the generation and function of memory CD8+ T cells[J]. J Immunol, 2008, 180(5): 2886-2893. DOI: 10.4049/jimmunol.180.5.2886. |
31. | Kijlstra A. Cytokines: their role in uveal disease[J]. Eye (Lond), 1997, 11(Pt 2): 200-205. DOI: 10.1038/eye.1997.51. |
32. | Elner VM, Burnstine MA, Strieter RM, et al. Cell-associated human retinal pigment epithelium interleukin-8 and monocyte chemotactic protein-1: immunochemical and in-situ hybridization analyses[J]. Exp Eye Res, 1997, 65(6): 781-789. DOI: 10.1006/exer.1997.0380. |
33. | Bian ZM, Elner VM, Yoshida A, et al. Signaling pathways for glycated human serum albumin-induced IL-8 and MCP-1 secretion in human RPE cells[J]. Invest Ophthalmol Vis Sci, 2001, 42(7): 1660-1668. |
34. | Schreiber RC, Krivacic K, Kirby B, et al. Monocyte chemoattractant protein (MCP)-1 is rapidly expressed by sympathetic ganglion neurons following axonal injury[J]. Neuroreport, 2001, 12(3): 601-606. DOI: 10.1097/00001756-200103050-00034. |
35. | Che X, Ye W, Panga L, et al. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice[J]. Brain Res, 2001, 902(2): 171-177. DOI: 10.1016/s0006-8993(01)02328-9. |
36. | Dong N, Li X, Xiao L, et al. Upregulation of retinal neuronal MCP-1 in the rodent model of diabetic retinopathy and its function in vitro[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7567-7575. DOI: 10.1167/iovs.12-9446. |
37. | Jiang Z, Hennein L, Xu Y, et al. Elevated serum monocyte chemoattractant protein-1 levels and its genetic polymorphism is associated with diabetic retinopathy in Chinese patients with type 2 diabetes[J]. Diabet Med, 2016, 33(1): 84-90. DOI: 10.1111/dme.12804. |
38. | Dong N, Xu B, Chu L, et al. Study of 27 aqueous humor cytokines in type 2 diabetic patients with or without macular edema[J/OL]. PLoS One, 2015, 10(4): e0125329[2015-04-29]. https://pubmed.ncbi.nlm.nih.gov/25923230/. DOI: 10.1371/journal.pone.0125329. |
39. | Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory factors with diabetic macular edema[J]. Ophthalmology, 2009, 116(1): 73-79. DOI: 10.1016/j.ophtha.2008.09.037. |
40. | Frey T, Antonetti DA. Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species[J]. Antioxid Redox Signal, 2011, 15(5): 1271-1284. DOI: 10.1089/ars.2011.3906. |
41. | Barber AJ, Antonetti DA, Kern TS, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes[J]. Invest Ophthalmol Vis Sci, 2005, 46(6): 2210-2218. DOI: 10.1167/iovs.04-1340. |
42. | Liu H, Tang J, Du Y, et al. Retinylamine benefits early diabetic retinopathy in mice[J]. J Biol Chem, 2015, 290(35): 21568-21579. DOI: 10.1074/jbc.M115.655555. |
43. | González-Mariscal L, Betanzos A, Nava P, et al. Tight junction proteins[J]. Prog Biophys Mol Biol, 2003, 81(1): 1-44. DOI: 10.1016/s0079-6107(02)00037-8. |
44. | Tonade D, Liu H, Palczewski K, et al. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes[J]. Diabetologia, 2017, 60(10): 2111-2120. DOI: 10.1007/s00125-017-4381-5. |
45. | Rangasamy S, McGuire PG, Franco Nitta C, et al. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy[J/OL]. PLoS One, 2014, 9(10): e108508[2014-08-20]. https://pubmed.ncbi.nlm.nih.gov/25329075/. DOI: 10.1371/journal.pone.0108508. |
46. | Harhaj NS, Felinski EA, Wolpert EB, et al. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability[J]. Invest Ophthalmol Vis Sci, 2006, 47(11): 5106-5115. DOI: 10.1167/iovs.06-0322. |
47. | Joussen AM, Murata T, Tsujikawa A, et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina[J]. Am J Pathol, 2001, 158(1): 147-152. DOI: 10.1016/S0002-9440(10)63952-1. |
48. | Navaratna D, McGuire PG, Menicucci G, et al. Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes[J]. Diabetes, 2007, 56(9): 2380-2387. DOI: 10.2337/db06-1694. |
49. | Sassa Y, Yoshida S, Ishikawa K, et al. The kinetics of VEGF and MCP-1 in the second vitrectomy cases with proliferative diabetic retinopathy[J]. Eye (Lond), 2016, 30(5): 746-753. DOI: 10.1038/eye.2016.20. |
50. | Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy[J]. Am J Pathol, 1991, 139(1): 81-100. |
51. | Matsumoto Y, Takahashi M, Ogata M. Relationship between glycoxidation and cytokines in the vitreous of eyes with diabetic retinopathy[J]. Jpn J Ophthalmol, 2002, 46(4): 406-412. DOI: 10.1016/s0021-5155(02)00508-7. |
52. | Al Shahi H, Shimada K, Miyauchi K, et al. Elevated circulating levels of inflammatory markers in patients with acute coronary syndrome[J/OL]. Int J Vasc Med, 2015, 2015: 805375[2015-08-04]. https://pubmed.ncbi.nlm.nih.gov/26504600/. DOI: 10.1155/2015/805375. |
53. | Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy[J]. Diabetes, 2005, 54(5): 1559-1565. DOI: 10.2337/diabetes.54.5.1559. |
54. | Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science, 2005, 308(5726): 1314-1318. DOI: 10.1126/science.1110647. |
55. | Dong N, Chang L, Wang B, et al. Retinal neuronal MCP-1 induced by AGEs stimulates TNF-alpha expression in rat microglia via p38, ERK, and NF-kappaB pathways[J]. Mol Vis, 2014, 20: 616-628. |
56. | Magnus T, Chan A, Linker RA, et al. Astrocytes are less efficient in the removal of apoptotic lymphocytes than microglia cells: implications for the role of glial cells in the inflamed central nervous system[J]. J Neuropathol Exp Neurol, 2002, 61(9): 760-766. DOI: 10.1093/jnen/61.9.760. |
57. | Wang AL, Yu AC, He QH, et al. AGEs mediated expression and secretion of TNF alpha in rat retinal microglia[J]. Exp Eye Res, 2007, 84(5): 905-913. DOI: 10.1016/j.exer.2007.01.011. |
- 1. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J/OL]. Eye Vis (Lond), 2015, 2: 17[2015-09-30]. https://pubmed.ncbi.nlm.nih.gov/26605370/. DOI: 10.1186/s40662-015-0026-2.
- 2. Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications[J]. J Clin Endocrinol Metab, 2009, 94(9): 3171-3182. DOI: 10.1210/jc.2008-2534.
- 3. Koleva-Georgieva DN, Sivkova NP, Terzieva D. Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy[J]. Folia Med (Plovdiv), 2011, 53(2): 44-50. DOI: 10.2478/v10153-010-0036-8.
- 4. Adamis AP. Is diabetic retinopathy an inflammatory disease?[J]. Br J Ophthalmol, 2002, 86(4): 363-365. DOI: 10.1136/bjo.86.4.363.
- 5. Joussen AM, Poulaki V, Mitsiades N, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression[J]. FASEB J, 2002, 16(3): 438-440. DOI: 10.1096/fj.01-0707fje.
- 6. Zheng L, Howell SJ, Hatala DA, et al. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy[J]. Diabetes, 2007, 56(2): 337-345. DOI: 10.2337/db06-0789.
- 7. 刘巨平, 李筱荣. 糖尿病视网膜病变: 一种非可控性炎症[J]. 中华实验眼科杂志, 2014, 32(1): 94-96. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.019.Liu JP, Li XR. Diabetic retinopathy: a nonresolving inflammation[J]. Chin J Exp Ophthalmol, 2014, 32(1): 94-96. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.019.
- 8. Taub DD. Chemokine-leukocyte interactions. The voodoo that they do so well[J]. Cytokine & Growth Factor Rev, 1996, 7(4): 355-376. DOI: 10.1016/s1359-6101(97)89237-4.
- 9. Matsushima K, Larsen CG, DuBois GC, et al. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line[J]. J Exp Med, 1989, 169(4): 1485-1490. DOI: 10.1084/jem.169.4.1485.
- 10. Van Coillie E, Van Damme J, Opdenakker G. The MCP/eotaxin subfamily of CC chemokines[J]. Cytokine Growth Factor Rev, 1999, 10(1): 61-86. DOI: 10.1016/s1359-6101(99)00005-2.
- 11. Yoshimura T, Leonard EJ. Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes[J]. J Immunol, 1990, 145(1): 292-297.
- 12. Weber KS, Klickstein LB, Weber C. Specific activation of leukocyte beta2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the alpha subunit cytoplasmic domains[J]. Mol Biol Cell, 1999, 10(4): 861-873. DOI: 10.1091/mbc.10.4.861.
- 13. Jiang Y, Beller DI, Frendl G, et al. Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes[J]. J Immunol, 1992, 148(8): 2423-2348.
- 14. Leonard EJ, Skeel A, Yoshimura T. Biological aspects of monocyte chemoattractant protein-1 (MCP-1)[J]. Adv Exp Med Biol, 1991, 305: 57-64. DOI: 10.1007/978-1-4684-6009-4_7.
- 15. Craig MJ, Loberg RD. CCL2 (monocyte chemoattractant protein-1) in cancer bone metastases[J]. Cancer Metastasis Rev, 2006, 25(4): 611-619. DOI: 10.1007/s10555-006-9027-x.
- 16. Wang Q, Ren J, Morgan S, et al. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm[J/OL]. PLoS One, 2014, 9(3): e92053[2014-03-14]. https://pubmed.ncbi.nlm.nih.gov/24632850/. DOI: 10.1371/journal.pone.0092053.
- 17. Schepers A, Eefting D, Bonta PI, et al. Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and in vivo[J]. Arterioscler Thromb Vasc Biol, 2006, 26(9): 2063-2069. DOI: 10.1161/01.ATV.0000235694.69719.e2.
- 18. Ohta M, Kitadai Y, Tanaka S, et al. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas[J]. Int J Oncol, 2003, 22(4): 773-778.
- 19. O'Hayre M, Salanga CL, Handel TM, et al. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment[J]. Biochem J, 2008, 409(3): 635-649. DOI: 10.1042/BJ20071493.
- 20. Yamamoto T, Eckes B, Mauch C, et al. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 alpha loop[J]. J Immunol, 2000, 164(12): 6174-6179. DOI: 10.4049/jimmunol.164.12.6174.
- 21. Takaishi H, Taniguchi T, Takahashi A, et al. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells[J]. Biochem Biophys Res Commun, 2003, 305(1): 122-128. DOI: 10.1016/s0006-291x(03)00712-5.
- 22. Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease[J]. Curr Pharm Des, 2008, 14(10): 979-986. DOI: 10.2174/138161208784139684.
- 23. Crane IJ, Wallace CA, McKillop-Smith S, et al. Control of chemokine production at the blood-retina barrier[J]. Immunology, 2000, 101(3): 426-433. DOI: 10.1046/j.0019-2805.2000.01105.x.
- 24. Huang H, Jing G, Wang JJ, et al. ATF4 is a novel regulator of MCP-1 in microvascular endothelial cells[J/OL]. J Inflamm (Lond), 2015, 12: 31[2015-04-17]. https://pubmed.ncbi.nlm.nih.gov/25914608/. DOI: 10.1186/s12950-015-0076-1.
- 25. 陈慷, 胡世兴, 邓新国, 等. 单核细胞趋化蛋白-1在早期糖尿病大鼠视网膜中的表达及意义[J]. 眼科研究, 2005, 23(1): 23-25. DOI: 10.3760/cma.j.issn.2095-0160.2005.01.007.Chen K, Hu SX, Deng XG, et al. Expression of monocyte chemoattractant protein-1 in retina of early diabetic rats and its significance[J]. Chin Ophthal Res, 2005, 23(1): 23-25. DOI: 10.3760/cma.j.issn.2095-0160.2005.01.007.
- 26. Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina[J]. Prog Retin Eye Res, 2006, 25(4): 397-424. DOI: 10.1016/j.preteyeres.2006.05.003.
- 27. Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group[J]. Diabetes, 1998, 47(5): 815-820. DOI: 10.2337/diabetes.47.5.815.
- 28. Harada C, Okumura A, Namekata K, et al. Role of monocyte chemotactic protein-1 and nuclear factor kappa B in the pathogenesis of proliferative diabetic retinopathy[J]. Diabetes Res Clin Pract, 2006, 74(3): 249-256. DOI: 10.1016/j.diabres.2006.04.017.
- 29. Carr MW, Roth SJ, Luther E, et al. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant[J]. Proc Natl Acad Sci USA, 1994, 91(9): 3652-3656. DOI: 10.1073/pnas.91.9.3652.
- 30. Wang T, Dai H, Wan N, et al. The role for monocyte chemoattractant protein-1 in the generation and function of memory CD8+ T cells[J]. J Immunol, 2008, 180(5): 2886-2893. DOI: 10.4049/jimmunol.180.5.2886.
- 31. Kijlstra A. Cytokines: their role in uveal disease[J]. Eye (Lond), 1997, 11(Pt 2): 200-205. DOI: 10.1038/eye.1997.51.
- 32. Elner VM, Burnstine MA, Strieter RM, et al. Cell-associated human retinal pigment epithelium interleukin-8 and monocyte chemotactic protein-1: immunochemical and in-situ hybridization analyses[J]. Exp Eye Res, 1997, 65(6): 781-789. DOI: 10.1006/exer.1997.0380.
- 33. Bian ZM, Elner VM, Yoshida A, et al. Signaling pathways for glycated human serum albumin-induced IL-8 and MCP-1 secretion in human RPE cells[J]. Invest Ophthalmol Vis Sci, 2001, 42(7): 1660-1668.
- 34. Schreiber RC, Krivacic K, Kirby B, et al. Monocyte chemoattractant protein (MCP)-1 is rapidly expressed by sympathetic ganglion neurons following axonal injury[J]. Neuroreport, 2001, 12(3): 601-606. DOI: 10.1097/00001756-200103050-00034.
- 35. Che X, Ye W, Panga L, et al. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice[J]. Brain Res, 2001, 902(2): 171-177. DOI: 10.1016/s0006-8993(01)02328-9.
- 36. Dong N, Li X, Xiao L, et al. Upregulation of retinal neuronal MCP-1 in the rodent model of diabetic retinopathy and its function in vitro[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7567-7575. DOI: 10.1167/iovs.12-9446.
- 37. Jiang Z, Hennein L, Xu Y, et al. Elevated serum monocyte chemoattractant protein-1 levels and its genetic polymorphism is associated with diabetic retinopathy in Chinese patients with type 2 diabetes[J]. Diabet Med, 2016, 33(1): 84-90. DOI: 10.1111/dme.12804.
- 38. Dong N, Xu B, Chu L, et al. Study of 27 aqueous humor cytokines in type 2 diabetic patients with or without macular edema[J/OL]. PLoS One, 2015, 10(4): e0125329[2015-04-29]. https://pubmed.ncbi.nlm.nih.gov/25923230/. DOI: 10.1371/journal.pone.0125329.
- 39. Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory factors with diabetic macular edema[J]. Ophthalmology, 2009, 116(1): 73-79. DOI: 10.1016/j.ophtha.2008.09.037.
- 40. Frey T, Antonetti DA. Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species[J]. Antioxid Redox Signal, 2011, 15(5): 1271-1284. DOI: 10.1089/ars.2011.3906.
- 41. Barber AJ, Antonetti DA, Kern TS, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes[J]. Invest Ophthalmol Vis Sci, 2005, 46(6): 2210-2218. DOI: 10.1167/iovs.04-1340.
- 42. Liu H, Tang J, Du Y, et al. Retinylamine benefits early diabetic retinopathy in mice[J]. J Biol Chem, 2015, 290(35): 21568-21579. DOI: 10.1074/jbc.M115.655555.
- 43. González-Mariscal L, Betanzos A, Nava P, et al. Tight junction proteins[J]. Prog Biophys Mol Biol, 2003, 81(1): 1-44. DOI: 10.1016/s0079-6107(02)00037-8.
- 44. Tonade D, Liu H, Palczewski K, et al. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes[J]. Diabetologia, 2017, 60(10): 2111-2120. DOI: 10.1007/s00125-017-4381-5.
- 45. Rangasamy S, McGuire PG, Franco Nitta C, et al. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy[J/OL]. PLoS One, 2014, 9(10): e108508[2014-08-20]. https://pubmed.ncbi.nlm.nih.gov/25329075/. DOI: 10.1371/journal.pone.0108508.
- 46. Harhaj NS, Felinski EA, Wolpert EB, et al. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability[J]. Invest Ophthalmol Vis Sci, 2006, 47(11): 5106-5115. DOI: 10.1167/iovs.06-0322.
- 47. Joussen AM, Murata T, Tsujikawa A, et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina[J]. Am J Pathol, 2001, 158(1): 147-152. DOI: 10.1016/S0002-9440(10)63952-1.
- 48. Navaratna D, McGuire PG, Menicucci G, et al. Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes[J]. Diabetes, 2007, 56(9): 2380-2387. DOI: 10.2337/db06-1694.
- 49. Sassa Y, Yoshida S, Ishikawa K, et al. The kinetics of VEGF and MCP-1 in the second vitrectomy cases with proliferative diabetic retinopathy[J]. Eye (Lond), 2016, 30(5): 746-753. DOI: 10.1038/eye.2016.20.
- 50. Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy[J]. Am J Pathol, 1991, 139(1): 81-100.
- 51. Matsumoto Y, Takahashi M, Ogata M. Relationship between glycoxidation and cytokines in the vitreous of eyes with diabetic retinopathy[J]. Jpn J Ophthalmol, 2002, 46(4): 406-412. DOI: 10.1016/s0021-5155(02)00508-7.
- 52. Al Shahi H, Shimada K, Miyauchi K, et al. Elevated circulating levels of inflammatory markers in patients with acute coronary syndrome[J/OL]. Int J Vasc Med, 2015, 2015: 805375[2015-08-04]. https://pubmed.ncbi.nlm.nih.gov/26504600/. DOI: 10.1155/2015/805375.
- 53. Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy[J]. Diabetes, 2005, 54(5): 1559-1565. DOI: 10.2337/diabetes.54.5.1559.
- 54. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science, 2005, 308(5726): 1314-1318. DOI: 10.1126/science.1110647.
- 55. Dong N, Chang L, Wang B, et al. Retinal neuronal MCP-1 induced by AGEs stimulates TNF-alpha expression in rat microglia via p38, ERK, and NF-kappaB pathways[J]. Mol Vis, 2014, 20: 616-628.
- 56. Magnus T, Chan A, Linker RA, et al. Astrocytes are less efficient in the removal of apoptotic lymphocytes than microglia cells: implications for the role of glial cells in the inflamed central nervous system[J]. J Neuropathol Exp Neurol, 2002, 61(9): 760-766. DOI: 10.1093/jnen/61.9.760.
- 57. Wang AL, Yu AC, He QH, et al. AGEs mediated expression and secretion of TNF alpha in rat retinal microglia[J]. Exp Eye Res, 2007, 84(5): 905-913. DOI: 10.1016/j.exer.2007.01.011.