1. |
Su D, Hubschman JP. A review of subthreshold micropulse laser and recent advances in retinal laser technology[J]. Ophthalmol Ther, 2017, 6(1): 1-6. DOI: 10.1007/s40123-017-0077-7.
|
2. |
Scholz P, Altay L, Fauser S. A review of subthreshold micropulse laser for treatment of macular disorders[J]. Adv Ther, 2017, 34(7): 1528-1555. DOI: 10.1007/s12325-017-0559-y.
|
3. |
Luttrull JK, Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review[J]. Curr Diabetes Rev, 2012, 8(4): 274-284. DOI: 10.2174/157339912800840523.
|
4. |
Ambiya V, Goud A, Mathai A, et al. Microsecond yellow laser for subfoveal leaks in central serous chorioretinopathy[J]. Clin Ophthalmol, 2016, 10: 1513-1519. DOI: 10.2147/opth.S112431.
|
5. |
Inagaki K, Ohkoshi K, Ohde S, et al. Subthreshold micropulse photocoagulation for persistent macular edema secondary to branch retinal vein occlusion including best-corrected visual acuity greater than 20/40[J/OL]. J Ophthalmol, 2014, 2014: 251257[2014-09-04]. https://pubmed.ncbi.nlm.nih.gov/25276413/. DOI: 10.1155/2014/251257.
|
6. |
Yadav NK, Jayadev C, Mohan A, et al. Subthreshold micropulse yellow laser (577 nm) in chronic central serous chorioretinopathy: safety profile and treatment outcome[J]. Eye (Lond), 2015, 29(2): 258-264. DOI: 10.1038/eye.2014.315.
|
7. |
Chen G, Tzekov R, Li W, et al. Subthreshold micropulse diode laser versus conventional laser photocoagulation for diabetic macular edema: a meta-analysis of randomized controlled trials[J]. Retina, 2016, 36(11): 2059-2065. DOI: 10.1097/iae.0000000000001053.
|
8. |
Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives[J]. Trends Endocrinol Metab, 2014, 25(1): 23-33. DOI: 10.1016/j.tem.2013.09.005.
|
9. |
Chhablani J, Roh YJ, Jobling AI, et al. Restorative retinal laser therapy: present state and future directions[J]. Surv Ophthalmol, 2018, 63(3): 307-328. DOI: 10.1016/j.survophthal.2017.09.008.
|
10. |
Midena E, Bini S. Multimodal retinal imaging of diabetic macular edema: toward new paradigms of pathophysiology[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(9): 1661-1668. DOI: 10.1007/s00417-016-3361-7.
|
11. |
Midena E, Pilotto E. Emerging insights into pathogenesis[J]. Dev Ophthalmol, 2017, 60: 16-27. DOI: 10.1159/000459687.
|
12. |
Grigsby JG, Cardona SM, Pouw CE, et al. The role of microglia in diabetic retinopathy[J/OL]. J Ophthalmol, 2014, 2014: 705783[2014-08-31]. https://pubmed.ncbi.nlm.nih.gov/25258680/. DOI: 10.1155/2014/705783.
|
13. |
Bringmann A, Wiedemann P. Müller glial cells in retinal disease[J]. Ophthalmologica, 2012, 227(1): 1-19. DOI: 10.1159/000328979.
|
14. |
Telegina DV, Kozhevnikova OS, Kolosova NG. Changes in retinal glial cells with age and during development of age-related macular degeneration[J]. Biochemistry (Mosc), 2018, 83(9): 1009-1017. DOI: 10.1134/s000629791809002x.
|
15. |
Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina[J]. Exp Eye Res, 2015, 136: 116-130. DOI: 10.1016/j.exer.2015.04.020.
|
16. |
Midena E, Micera A, Frizziero L, et al. Sub-threshold micropulse laser treatment reduces inflammatory biomarkers in aqueous humour of diabetic patients with macular edema[J/OL]. Sci Rep, 2019, 9(1): 10034[2019-07-11]. https://pubmed.ncbi.nlm.nih.gov/31296907/. DOI 10.1038/s41598-019-46515-y.
|
17. |
Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina[J]. Prog Retin Eye Res, 2006, 25(4): 397-424. DOI: 10.1016/j.preteyeres.2006.05.003.
|
18. |
Midena E, Bini S, Martini F, et al. Changes of aqueous humor Müller cells' biomarkers in human patients affected by diabetic macular edema after subthreshold micropulse laser treament[J]. Retina, 2020, 40(1): 126-134. DOI: 10.1097/iae.0000000000002356.
|
19. |
Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations[J/OL]. J Diabetes Res, 2013, 2013: 905058[2013-06-12]. https://pubmed.ncbi.nlm.nih.gov/23841106/. DOI: 10.1155/2013/905058.
|
20. |
Rungger-Brändle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2000, 41(7): 1971-1980.
|
21. |
Sarthy V. Focus on molecules: glial fibrillary acidic protein (GFAP)[J]. Exp Eye Res, 2007, 84(3): 381-382. DOI: 10.1016/j.exer.2005.12.014.
|
22. |
Hibino H, Inanobe A, Furutani K, et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles[J]. Physiol Rev, 2010, 90(1): 291-366. DOI: 10.1152/physrev.00021.2009.
|
23. |
Zhang Y, Xu G, Ling Q, et al. Expression of aquaporin 4 and Kir4.1 in diabetic rat retina: treatment with minocycline[J]. J Int Med Res, 2011, 39(2): 464-479. DOI: 10.1177/147323001103900214.
|
24. |
Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy[J]. Vision Res, 2017, 139: 93-100. DOI: 10.1016/j.visres.2017.03.013.
|
25. |
Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina[J]. Diabetes, 2006, 55(3): 633-639. DOI: 10.2337/diabetes.55.03.06.db05-1349.
|
26. |
Zhao M, Valamanesh F, Celerier I, et al. The neuroretina is a novel mineralocorticoid target: aldosterone up-regulates ion and water channels in Müller glial cells[J]. FASEB J, 2010, 24(9): 3405-3415. DOI: 10.1096/fj.09-154344.
|
27. |
Ponnalagu M, Subramani M, Jayadev C, et al. Retinal pigment epithelium-secretome: a diabetic retinopathy perspective[J]. Cytokine, 2017, 95: 126-135. DOI: 10.1016/j.cyto.2017.02.013.
|
28. |
Wang JJ, Zhu M, Le YZ. Functions of Müller cell-derived vascular endothelial growth factor in diabetic retinopathy[J]. World J Diabetes, 2015, 6(5): 726-733. DOI: 10.4239/wjd.v6.i5.726.
|
29. |
Wang J, Xu X, Elliott MH, et al. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage[J]. Diabetes, 2010, 59(9): 2297-2305. DOI: 10.2337/db09-1420.
|
30. |
Obert E, Strauss R, Brandon C, et al. Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, αCT1, reduces VEGF-dependent RPE pathophysiology[J]. J Mol Med (Berl), 2017, 95(5): 535-552. DOI: 10.1007/s00109-017-1506-8.
|
31. |
Rodrigues M, Xin X, Jee K, et al. VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy[J]. Diabetes, 2013, 62(11): 3863-3873. DOI: 10.2337/db13-0014.
|
32. |
Mohammad G, Kowluru RA. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction[J]. Lab Invest, 2010, 90(9): 1365-1372. DOI: 10.1038/labinvest.2010.89.
|
33. |
Kowluru RA, Zhong Q, Santos JM. Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9[J]. Expert Opin Investig Drugs, 2012, 21(6): 797-805. DOI: 10.1517/13543784.2012.681043.
|
34. |
Xu HZ, Song Z, Fu S, et al. RPE barrier breakdown in diabetic retinopathy: seeing is believing[J]. J Ocul Biol Dis Infor, 2011, 4(1-2): 83-92. DOI: 10.1007/s12177-011-9068-4.
|
35. |
王海青, 牛国桢, 张晓波, 等. RPE细胞的正常功能及其在眼科疾病中的作用[J]. 生命科学, 2013, 25(9): 878-885.Wang HQ, Niu GZ, Zhang XB, et al. The normal functions of RPE cell and its roles in eye disease[J]. Chinese Bulletin of Life Sciences, 2013, 25(9): 878-885.
|
36. |
Tababat-Khani P, Berglund LM, Agardh CD, et al. Photocoagulation of human retinal pigment epithelial cells in vitro: evaluation of necrosis, apoptosis, cell migration, cell proliferation and expression of tissue repairing and cytoprotective genes[J/OL]. PLoS One, 2013, 8(8): e70465[2013-08-01]. https://pubmed.ncbi.nlm.nih.gov/23936435/. DOI: 10.1371/journal.pone.0070465.
|
37. |
Inagaki K, Shuo T, Katakura K, et al. Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells[J/OL]. J Ophthalmol, 2015, 2015: 729792[2015-11-30]. https://pubmed.ncbi.nlm.nih.gov/26697211/. DOI: 10.1155/2015/729792.
|
38. |
Ji Cho M, Yoon SJ, Kim W, et al. Oxidative stress-mediated TXNIP loss causes RPE dysfunction[J]. Exp Mol Med, 2019, 51(10): 1-13. DOI: 10.1038/s12276-019-0327-y.
|
39. |
Zhang SX, Wang JJ, Gao G, et al. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy[J]. J Mol Endocrinol, 2006, 37(1): 1-12. DOI: 10.1677/jme.1.02008.
|
40. |
Li Z, Song Y, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. DOI: 10.1007/s12013-015-0675-8.
|
41. |
García-Ramírez M, Hernández C, Simó R. Expression of erythropoietin and its receptor in the human retina: a comparative study of diabetic and nondiabetic subjects[J]. Diabetes Care, 2008, 31(6): 1189-1194. DOI: 10.2337/dc07-2075.
|
42. |
Midena E, Bini S, Frizziero L, et al. Aqueous humour concentrations of PEDF and erythropoietin are not influenced by subthreshold micropulse laser treatment of diabetic macular edema[J/OL]. Biosci Rep, 2019, 39(6): BSR20190328[2019-06-18]. https://pubmed.ncbi.nlm.nih.gov/31138761/. DOI: 10.1042/bsr20190328.
|
43. |
Garcia-Ramírez M, Hernández C, Ruiz-Meana M, et al. Erythropoietin protects retinal pigment epithelial cells against the increase of permeability induced by diabetic conditions: essential role of JAK2/ PI3K signaling[J]. Cell Signal, 2011, 23(10): 1596-1602. DOI: 10.1016/j.cellsig.2011.05.011.
|
44. |
García-Arumí J, Fonollosa A, Macià C, et al. Vitreous levels of erythropoietin in patients with macular oedema secondary to retinal vein occlusions: a comparative study with diabetic macular oedema[J]. Eye (Lond), 2009, 23(5): 1066-1071. DOI: 10.1038/eye.2008.230.
|
45. |
Mitsuhashi J, Morikawa S, Shimizu K, et al. Intravitreal injection of erythropoietin protects against retinal vascular regression at the early stage of diabetic retinopathy in streptozotocin-induced diabetic rats[J]. Exp Eye Res, 2013, 106: 64-73. DOI: 10.1016/j.exer.2012.11.001.
|
46. |
Yenari MA, Liu J, Zheng Z, et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection[J]. Ann N Y Acad Sci, 2005, 1053: 74-83. DOI: 10.1196/annals.1344.007.
|
47. |
Luttrull JK, Chang DB, Margolis BW, et al. Laser resensitization of medically unresponsive neovascular age-related macular degeneration: efficacy and implications[J]. Retina, 2015, 35(6): 1184-1194. DOI: 10.1097/iae.0000000000000458.
|
48. |
Sramek C, Mackanos M, Spitler R, et al. Non-damaging retinal phototherapy: dynamic range of heat shock protein expression[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1780-1787. DOI: 10.1167/iovs.10-5917.
|