1. |
Mihailovic N, Eter N, Alnawaiseh M. Foveal avascular zone and OCT angiography. An overview of current knowledge[J]. Ophthalmologe, 2019, 116(7): 610-616. DOI: 10.1007/s00347-018-0838-2.
|
2. |
Ciloglu E, Unal F, Sukgen EA, et al. Evaluation of foveal avascular zone and capillary plexuses in diabetic patients by optical coherence tomography angiography[J]. Korean J Ophthalmol, 2019, 33(4): 359-365. DOI: 10.3341/kjo.2018.0025.
|
3. |
Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proc Natl Acad Sci U S A, 2015, 112(18): E2395-E2402. DOI: 10.1073/pnas.1500185112.
|
4. |
Iafe NA, Phasukkijwatana N, Chen X, et al. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5780-5787. DOI: 10.1167/iovs.16-20045.
|
5. |
Garrity ST, Iafe NA, Phasukkijwatana N, et al. Quantitative analysis of three distinct retinal capillary plexuses in healthy eyes using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2017, 58(12): 5548-5555. DOI: 10.1167/iovs.17-22036.
|
6. |
Magrath GN, Say EAT, Sioufi K, et al. Variability in foveal avascular zone and capillary density using optical coherence tomography angiography machines in healthy eyes[J]. Retina, 2017, 37(11): 2102-2111. DOI: 10.1097/IAE.0000000000001458.
|
7. |
Corvi F, Pellegrini M, Erba S, et al. Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices[J]. Am J Ophthalmol, 2018, 186: 25-31. DOI: 10.1016/j.ajo.2017.11.011.
|
8. |
Rommel F, Siegfried F, Kurz M, et al. Impact of correct anatomical slab segmentation on foveal avascular zone measurements by optical coherence tomography angiography in healthy adults[J]. J Curr Ophthalmol, 2018, 30(2): 156-160. DOI: 10.1016/j.joco.2018.02.001.
|
9. |
Shahlaee A, Pefkianaki M, Hsu J, et al. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 161: 50-55. DOI: 10.1016/j.ajo.2015.09.026.
|
10. |
Ghassemi F, Mirshahi R, Bazvand F, et al. The quantitative measurements of foveal avascular zone using optical coherence tomography angiography in normal volunteers[J]. J Curr Ophthalmol, 2017, 29(4): 293-299. DOI: 10.1016/j.joco.2017.06.004.
|
11. |
Linderman R, Salmon AE, Strampe M, et al. Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling[J/OL]. Transl Vis Sci Technol, 2017, 6(3): 16[2017-06-09].http://europepmc.org/article/MED/28616362. DOI: 10.1167/tvst.6.3.16..
|
12. |
Cao D, Yang D, Huang Z, et al. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy[J]. Acta Diabetol, 2018, 55(5): 469-477. DOI: 10.1007/s00592-018-1115-1.
|
13. |
Samara WA, Shahlaee A, Adam MK, et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity[J]. Ophthalmology, 2017, 124(2): 235-244. DOI: 10.1016/j.ophtha.2016.10.008.
|
14. |
Tang FY, Ng DS, Lam A, et al. Author correction: determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes[J/OL]. Sci Rep, 2018, 8(1): 7314[2018-05-04]. http://europepmc.org/article/MED/29728691. DOI: 10.1038/s41598-018-25619-x..
|
15. |
Lu Y, Simonett JM, Wang J, et al. Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2212-2221. DOI: 10.1167/iovs.17-23498.
|
16. |
Ghasemi Falavarjani K, Iafe NA, Hubschman JP, et al. Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-vegf therapy in eyes with diabetic macular edema and retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 30-34. DOI: 10.1167/iovs.16-20579.
|
17. |
Dastiridou A, Karathanou K, Riga P, et al. OCT angiography study of the macula in patients with diabetic macular edema treated with intravitreal aflibercept[J/OL]. Ocul Immunol Inflamm, 2020, 2020: E1-6[2020-01-17]. https://www.tandfonline.com/doi/abs/10.1080/09273948.2019.1704028?journalCode=ioii20. DOI: 10.1080/09273948.2019.1704028. [published online ahead of print].
|
18. |
Adhi M, Filho MA, Louzada RN, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT486-OCT494. DOI: 10.1167/iovs.15-18907.
|
19. |
Kang JW, Yoo R, Jo YH, et al. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion[J]. Retina, 2017, 37(9): 1700-1709. DOI: 10.1097/IAE.0000000000001403.
|
20. |
Samara WA, Shahlaee A, Sridhar J, et al. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion[J]. Am J Ophthalmol, 2016, 166: 76-83. DOI: 10.1016/j.ajo.2016.03.033.
|
21. |
Wakabayashi T, Sato T, Hara-Ueno C, et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2087-2094. DOI: 10.1167/iovs.16-21208.
|
22. |
Scarinci F, Nesper PL, Fawzi AA. Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia[J]. Am J Ophthalmol, 2016, 168: 129-138. DOI: 10.1016/j.ajo.2016.05.002.
|
23. |
Ogasawara Y, Iwase T, Yamamoto K, et al. Relationship between abnormalities of photoreceptor microstructures and microvascular structures determined by optical coherence tomography angiography in eyes with branch retinal vein occlusion[J]. Retina, 2020, 40(2): 350-358. DOI: 10.1097/IAE.0000000000002379.
|
24. |
Deng Y, Zhong QW, Zhang AQ, et al. Microvascular changes after conbercept therapy in central retinal vein occlusion analyzed by optical coherence tomography angiography[J]. Int J Ophthalmol, 2019, 12(5): 802-808. DOI: 10.18240/ijo.2019.05.16.
|
25. |
Winegarner A, Wakabayashi T, Fukushima Y, et al. Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2708-2716. DOI: 10.1167/iovs.17-23437.
|
26. |
Schwartz R, Sivaprasad S, Macphee R, et al. Subclinical macular changes and disease laterality in pediatric coats disease determined by quantitative optical coherence tomography angiography[J]. Retina, 2019, 39(12): 2392-2398. DOI: 10.1097/IAE.0000000000002322.
|
27. |
Gass JD, Blodi BA. Idiopathic juxtafoveolar retinal telangiectasis: update of classification and follow-up study[J]. Ophthalmology, 1993, 100(10): 1536-1546. DOI: 10.1016/S0161-6420(93)31447-8.
|
28. |
Zhao M, Andrieu-Soler C, Kowalczuk L, et al. A new CRB1 rat mutation links Müller glial cells to retinal telangiectasia[J]. J Neurosci, 2015, 35(15): 6093-6106. DOI: 10.1523/JNEUROSCI.3412-14.2015.
|
29. |
Guo J, Tang W, Ye X, et al. Predictive multi-imaging biomarkers relevant for visual acuity in idiopathic macular telangiectasis type 1[J/OL]. BMC Ophthalmol, 2018, 18(1): 69[2018-03-05]. https://bmcophthalmol.biomedcentral.com/articles/10.1186/s12886-018-0737-y. DOI: 10.1186/s12886-018-0737-y.
|
30. |
Chidambara L, Gadde SG, Yadav NK, et al. Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography[J]. Br J Ophthalmol, 2016, 100(11): 1482-1488. DOI: 10.1136/bjophthalmol-2015-307941.
|
31. |
Hammer DX, Iftimia NV, Ferguson RD, et al. Foveal fine structure in retinopathy of prematurity: an adaptive optics fourier domain optical coherence tomography study[J]. Invest Ophthalmol Vis Sci, 2008, 49(5): 2061-2070. DOI: 10.1167/iovs.07-1228.
|
32. |
Chen YC, Chen YT, Chen SN. Foveal microvascular anomalies on optical coherence tomography angiography and the correlation with foveal thickness and visual acuity in retinopathy of prematurity[J]. Graefe’s Arch Clin Exp Ophthalmol, 2019, 257(1): 23-30. DOI: 10.1007/s00417-018-4162-y.
|
33. |
Falavarjani KG, Iafe NA, Velez FG, et al. Optical coherence tomography angiography of the fovea in children born preterm[J]. Retina, 2017, 37(12): 2289-2294. DOI: 10.1097/IAE.0000000000001471.
|
34. |
Akula JD, Hansen RM, Martinez-Perez ME, et al. Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity[J]. Invest Ophthalmol Vis Sci, 2007, 48(9): 4351-4359. DOI: 10.1167/iovs.07-0204.
|
35. |
Chen YC, Chen SN. Foveal microvasculature, refractive errors, optical biometry and their correlations in school-aged children with retinopathy of prematurity after intravitreal antivascular endothelial growth factors or laser photocoagulation[J]. Br J Ophthalmol, 2020, 104(5): 691-696. DOI: 10.1136/bjophthalmol-2019-314610.
|
36. |
Ku JH, Ali A, Suhler EB, et al. Characteristics and visual outcome of patients with retinal vasculitis[J]. Arch Ophthalmol, 2012, 130(10): 1261-1266. DOI: 10.1001/archophthalmol.2012.1596.
|
37. |
Tian M, Tappeiner C, Zinkernagel MS, et al. Swept-source optical coherence tomography angiography reveals vascular changes in intermediate uveitis[J]. Acta Ophthalmol, 2019, 97(5): e785-e791. DOI: 10.1111/aos.14024.
|