1. |
Zhang J, Wang Y, Li L, et al. Diabetic retinopathy may predict the renal outcomes of patients with diabetic nephropathy[J]. Ren Fail, 2018, 40(1): 243-251. DOI: 10.1080/0886022X.2018.1456453.
|
2. |
Song W, Zhu YW. Chinese medicines in diabetic retinopathy therapies[J]. Chin J Integr Med, 2019, 25(4): 316-320. DOI: 10.1007/s11655-017-2911-0.
|
3. |
Al-Kharashi AS. Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy[J]. Saudi J Ophthalmol, 2018, 32(4): 318-323. DOI: 10.1016/j.sjopt.2018.05.002.
|
4. |
Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings[J]. Ophthalmology, 2018, 125(10): 1608-1622. DOI: 10.1016/j.ophtha.2018.04.007.
|
5. |
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186. DOI: 10.1016/j.preteyeres.2015.08.001.
|
6. |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国实用内科杂志, 2018, 38(4): 292-344. DOI: 10.19538/j.nk2018040108.Chinese Diabetes Society. Guidelines for the prevention and control of type 2 diabetes in China (2017)[J]. Chinese Journal of Practical Internal Medicine, 2018, 38(4): 292-344. DOI: 10.19538/j.nk2018040108.
|
7. |
Elkjaer AS, Lynge SK, Grauslund J. Evidence and indications for systemic treatment in diabetic retinopathy: a systematic review[J]. Acta Ophthalmol, 2020, 98(4): 329-336. DOI: 10.1111/aos.14377.
|
8. |
Chen Q, Ma Q, Wu C, et al. Macular vascular fractal dimension in the deep capillary layer as an early indicator of microvascular loss for retinopathy in type 2 diabetic patients[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3785-3794. DOI: 10.1167/iovs.17-21461.
|
9. |
Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study[J]. BMJ, 2000, 321(7258): 405-412. DOI: 10.1136/bmj.321.7258.405.
|
10. |
Wang NK, Lai CC, Wang JP, et al. Risk factors associated with the development of retinopathy 10 yr after the diagnosis of juvenile-onset type 1 diabetes in Taiwan: a cohort study from the CGJDES[J]. Pediatric Diabetes, 2016, 17(6): 407-416. DOI: 10.1111/pedi.12312.
|
11. |
Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action[J]. Cell Metab, 2013, 17(6): 819-837. DOI: 10.1016/j.cmet.2013.04.008.
|
12. |
Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody[J]. Endocrinology, 2014, 155(4): 1280-1290. DOI: 10.1210/en.2013-1934.
|
13. |
Tonneijck L, Smits MM, van Raalte DH, et al. Incretin-based drugs and renoprotection-is hyperfiltration key?[J]. Kidney Int, 2015, 87(3): 660-661. DOI: 10.1038/ki.2014.398.
|
14. |
Shin S, Le Lay J, Everett LJ, et al. CREB mediates the insulinotropic and anti-apoptotic effects of GLP-1 signaling in adult mouse β-cells[J]. Mol Metab, 2014, 3(8): 803-812. DOI: 10.1016/j.molmet.2014.08.001.
|
15. |
Trujillo JM, Nuffer W, Ellis SL. GLP-1 receptor agonists: a review of head-to-head clinical studies[J]. Ther Adv Endocrinol Metab, 2015, 6(1): 19-28. DOI: 10.1177/2042018814559725.
|
16. |
Armstrong MJ, Hull D, Guo K, et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis[J]. J Hepatol, 2016, 64(2): 399-408. DOI: 10.1016/j.jhep.2015.08.038.
|
17. |
Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[J/OL]. Int J Mol Sci, 2018, 19(4): 942[2018-03-22]. https://pubmed.ncbi.nlm.nih.gov/29565290/. DOI: 10.3390/ijms19040942.
|
18. |
Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: a position statement by the American diabetes association[J]. Diabetes Care, 2017, 40(3): 412-418. DOI: 10.2337/dc16-2641.
|
19. |
Hernández C, Bogdanov P, Corraliza L, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes[J]. Diabetes, 2016, 65(1): 172-187. DOI: 10.2337/db15-0443.
|
20. |
Sampedro J, Bogdanov P, Ramos H, et al. New insights into the mechanisms of action of topical administration of GLP-1 in an experimental model of diabetic retinopathy[J/OL]. J Clin Med, 2019, 8(3): 339[2015-09-17]. https://pubmed.ncbi.nlm.nih.gov/30862093/. DOI: 10.3390/jcm8030339.
|
21. |
郑宏华, 雷雨, 陈小红, 等. 利拉鲁肽在早期糖尿病视网膜病变中的视网膜神经保护作用[J]. 国际眼科杂志, 2019, 19(2): 275-279. DOI: 10.3980/j.issn.1672-5123.2019.2.21.Zheng HH, Lei Y, Chen XH, et al. Retinal neuroprotective effect of GLP-1 analogs liraglutide in early diabetic retinopathy[J]. Int Eye Sci, 2019, 19(2): 275-279. DOI: 10.3980/j.issn.1672-5123.2019.2.21.
|
22. |
Kodera R, Shikata K, Kataoka HU, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes[J]. Diabetologia, 2011, 54(4): 965-978. DOI: 10.1007/s00125-010-2028-x.
|
23. |
Chung YR, Ha KH, Kim HC, et al. Dipeptidyl peptidase-4 inhibitors versus other antidiabetic drugs added to metformin monotherapy in diabetic retinopathy progression: a real world-based cohort study[J]. Diabetes Metab J, 2019, 43(5): 640-648. DOI: 10.4093/dmj.2018.0137.
|
24. |
Dietrich N, Kolibabka M, Busch S, et al. The DPP4 inhibitor linagliptin protects from experimental diabetic retinopathy[J/OL]. PLoS One, 2016, 11(12): e0167853[2019-02-20]. https://pubmed.ncbi.nlm.nih.gov/27942008/. DOI: 10.1371/journal.pone.0167853.
|
25. |
Gonçalves A, Marques C, Leal E, et al. Dipeptidyl peptidase-Ⅳinhibition prevents blood-retinal barrier breakdown, inflammation and neuronal cell death in the retina of type 1 diabetic rats[J]. Biochim Biophys Acta, 2014, 1842(9): 1454-1463. DOI: 10.1016/j.bbadis.2014.04.013.
|
26. |
Hernández C, Bogdanov P, Solà-Adell C, et al. Topical administration of DPP-Ⅳ inhibitors prevents retinal neurodegeneration in experimental diabetes[J]. Diabetologia, 2017, 60(11): 2285-2298. DOI: 10.1007/s00125-017-4388-y.
|
27. |
Cheng M, Huang K, Zhou J, et al. A critical role of src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart[J]. J Mol Cell Cardiol, 2015, 81: 49-53. DOI: 10.1016/j.yjmcc.2015.01.024.
|
28. |
Lee CS, Kim YG, Cho HJ, et al. Dipeptidyl peptidase-4 inhibitor increases vascular leakage in retina through VE-cadherin phosphorylation[J/OL]. Sci Rep, 2016, 6: 29393[2016-07-06]. https://pubmed.ncbi.nlm.nih.gov/27381080/. DOI: 10.1038/srep29393.
|
29. |
Davidson JA. SGLT2 inhibitors in patients with type 2 diabetes and renal disease: overview of current evidence[J]. Postgrad Med, 2019, 131(4): 251-260. DOI: 10.1080/00325481.2019.1601404.
|
30. |
May M, Framke T, Junker B, et al. How and why SGLT2 inhibitors should be explored as potential treatment option in diabetic retinopathy: clinical concept and methodology[J/OL]. Ther Adv Endocrinol Metab, 2019, 10: 2042018819891886[2019-12-11]. https://pubmed.ncbi.nlm.nih.gov/31853361/. DOI: 10.1177/2042018819891886.
|
31. |
Liu XY, Zhang N, Chen R, et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes: a meta-analysis of randomized controlled trials for 1 to 2years[J]. J Diabetes Complications, 2015, 29(8): 1295-1303. DOI: 10.1016/j.jdiacomp.2015.07.011.
|
32. |
Herat LY, Matthews VB, Rakoczy PE, et al. Focusing on sodium glucose cotransporter-2 and the sympathetic nervous system: potential impact in diabetic retinopathy[J/OL]. Int J Endocrinol, 2018, 2018: 9254126[2018-07-05]. https://pubmed.ncbi.nlm.nih.gov/30123269/. DOI: 10.1155/2018/9254126.
|
33. |
Sha W, Wen S, Chen L, et al. The role of SGLT2 inhibitor on the treatment of diabetic retinopathy[J/OL]. J Diabetes Res, 2020, 2020: 8867875[2020-11-12]. https://pubmed.ncbi.nlm.nih.gov/33274239/. DOI: 10.1155/2020/8867875.
|
34. |
Yoshizumi H, Ejima T, Nagao T, et al. Recovery from diabetic macular edema in a diabetic patient after minimal dose of a sodium glucose co-transporter 2 inhibitor[J]. Am J Case Rep, 2018, 19: 462-466. DOI: 10.12659/AJCR.909708.
|
35. |
Kelly MS, Lewis J, Huntsberry AM, et al. Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease[J]. Postgrad Med, 2019, 131: 31-42. DOI: 10.1080/00325481.2019.1549459.
|
36. |
Ott C, Jumar A, Striepe K, et al. A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation[J/OL]. Cardiovasc Diabetol, 2017, 16(1): 26[2017-02-23]. https://pubmed.ncbi.nlm.nih.gov/28231831/. DOI: 10.1186/s12933-017-0510-1.
|
37. |
Inzucchi SE, Wanner C, Hehnke U, et al. Retinopathy outcomes with empagliflozin versus placebo in the EMPA-REG outcome trial[J/OL]. Diabetes Care, 2019, 42(4): e53-e55[2019-01-31]. https://pubmed.ncbi.nlm.nih.gov/30705060/. DOI: 10.2337/dc18-1355.
|
38. |
Takatsuna Y, Ishibashi R, Tatsumi T, et al. Sodium-glucose cotransporter 2 inhibitors improve chronic diabetic macular edema[J/OL]. Case Rep Ophthalmol Med, 2020, 2020: 8867079[2020-11-12]. https://pubmed.ncbi.nlm.nih.gov/33274092/. DOI: 10.1155/2020/8867079.
|
39. |
UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38[J]. BMJ, 1998, 317(7160): 703-713. DOI: 10.1136/bmj.317.7160.703.
|
40. |
Wang S, Xu L, Jonas JB, et al. Major eye diseases and risk factors associated with systemic hypertension in an adult Chinese population: the Beijing Eye Study[J]. Ophthalmology, 2009, 116(12): 2373-2380. DOI: 10.1016/j.ophtha.2009.05.041.
|
41. |
Kanda A, Noda K, Saito W, et al. (Pro)renin receptor is associated with angiogenic activity in proliferative diabetic retinopathy[J]. Diabetologia, 2012, 55(11): 3104-3113. DOI: 10.1007/s00125-012-2702-2.
|
42. |
Mahajan N, Arora P, Sandhir R. Perturbed biochemical pathways and associated oxidative stress lead to vascular dysfunctions in diabetic retinopathy[J/OL]. Oxid Med Cell Longev, 2019, 2019: 8458472[2019-03-06]. https://pubmed.ncbi.nlm.nih.gov/30962865/. DOI: 10.1155/2019/8458472.
|
43. |
Prasad T, Roksnoer LC, Zhu P, et al. Beneficial effects of combined AT1 receptor/neprilysin inhibition (ARNI) versus AT1 receptor blockade alone in the diabetic eye[J]. Invest Ophthalmol Vis Sci, 2016, 57(15): 6722-6730. DOI: 10.1167/iovs.16-20289.
|
44. |
Wang B, Wang F, Zhang Y, et al. Effects of RAS inhibitors on diabetic retinopathy: a systematic review and meta-analysis[J]. Lancet Diabetes Endocrinol, 2015, 3(4): 263-274. DOI: 10.1016/S2213-8587(14)70256-6.
|
45. |
Zhang HY, Wang JY, Ying GS, et al. Serum lipids and other risk factors for diabetic retinopathy in Chinese type 2 diabetic patients[J]. J Zhejiang Univ Sci B, 2013, 14(5): 392-399. DOI: 10.1631/jzus.B1200237.
|
46. |
Li J, Wang JJ, Chen D, et al. Systemic administration of HMG-CoA reductase inhibitor protects the blood-retinal barrier and ameliorates retinal inflammation in type 2 diabetes[J]. Exp Eye Res, 2009, 89(1): 71-78. DOI: 10.1016/j.exer.2009.02.013.
|
47. |
Kang EY, Chen TH, Garg SJ, et al. Association of statin therapy with prevention of vision-threatening diabetic retinopathy[J]. JAMA Ophthalmol, 2019, 137(4): 363-371. DOI: 10.1001/jamaophthalmol.2018.6399.
|
48. |
Gurreri A, Pazzaglia A, Schiavi C. Role of statins and ascorbic acid in the natural history of diabetic retinopathy: a new, affordable therapy?[J]. Ophthalmic Surg Lasers Imaging Retina, 2019, 50(5): S23-S27. DOI: 10.3928/23258160-20190108-06.
|
49. |
Chen N, Jiang K, Yan GG. Effect of fenofibrate on diabetic retinopathy in rats via SIRT1/NF-κB signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(19): 8630-8636. DOI: 10.26355/eurrev_201910_19180.
|
50. |
Yeh PT, Wang LC, Chang SW, et al. Effect of fenofibrate on the expression of inflammatory mediators in a diabetic rat model[J]. Curr Eye Res, 2019, 44(10): 1121-1132. DOI: 10.1080/02713683.2019.1622020.
|
51. |
Liu Q, Zhang X, Cheng R, et al. Salutary effect of fenofibrate on type 1 diabetic retinopathy via inhibiting oxidative stress-mediated Wnt/β-catenin pathway activation[J]. Cell Tissue Res, 2019, 376(2): 165-177. DOI: 10.1007/s00441-018-2974-z.
|
52. |
Qiu F, Meng T, Chen Q, et al. Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration[J]. Mol Pharm, 2019, 16(5): 1958-1970. DOI: 10.1021/acs.molpharmaceut.8b01319.
|
53. |
Mozetic V, Pacheco RL, Latorraca COC, et al. Statins and/or fibrates for diabetic retinopathy: a systematic review and meta-analysis[J/OL]. Diabetol Metab Syndr, 2019, 11: 92[2019-11-08]. https://pubmed.ncbi.nlm.nih.gov/31719846/. DOI: 10.1186/s13098-019-0488-9.
|