1. |
Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. DOI: 10.1016/S0140-6736(18)31550-2.
|
2. |
Askou AL, Alsing S, Holmgaard A, et al. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy[J]. Acta Ophthalmol, 2018, 96(1): 9-23. DOI: 10.1111/aos.13407.
|
3. |
潘俊如, 余其林, 张述, 等. 老年性黄斑变性病因研究新进展[J]. 国际眼科杂志, 2013, 13(5): 905-908. DOI: 10.3980/j.issn.1672-5123.2013.05.18.Pan JR, Yu QL, Zhang S, et al. Advance in etiology of age-related macular degenerationy[J]. Int Eye Sci, 2013, 13(5): 905-908. DOI: 10.3980/j.issn.1672-5123.2013.05.18.
|
4. |
Murad N, Kokkinaki M, Gunawardena N, et al. MiR-184 regulates ezrin, LAMP‐1 expression, affects phagocytosis in human retinal pigment epithelium and is downregulated in age-related macular degeneration[J]. FEBS J, 2014, 281(23): 5251-5264. DOI: 10.1111/febs.13066.
|
5. |
秦兵. MicroRNA-184调控视网膜色素上皮细胞分化机制的研究[D]. 南京: 南京医科大学, 2018.Qin B. Study on the mechanism of microRNA-184 regulating the differentiation of retinal pigment epithelial cells[D]. Nanjing: Nanjing Medical University, 2018.
|
6. |
Lin H, Qian J, Castillo AC, et al. Effect of miR-23 on oxidant-induced injury in human retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6308-6314. DOI: 10.1167/iovs.10-6632.
|
7. |
Tasharrofi N, Kouhkan F, Soleimani M, et al. Survival improvement in human retinal pigment epithelial cells via Fas receptor targeting by miR-374a[J]. J Cell Biochem, 2017, 118(12): 4854-4861. DOI: 10.1002/jcb.26160.
|
8. |
Li DD, Zhong BW, Zhang HX, et al. Inhibition of the oxidative stress-induced miR-23a protects the human retinal pigment epithelium (RPE) cells from apoptosis through the upregulation of glutaminase and glutamine uptake[J]. Mol Biol Rep, 2016, 43(10): 1079-1087. DOI: 10.1007/s11033-016-4041-8.
|
9. |
Ayaz L, Dinc E. Evaluation of microRNA responses in ARPE-19 cells against the oxidative stress[J]. Cutan Ocul Toxicol, 2018, 37(2): 121-126. DOI: 10.1080/15569527.2017.1355314.
|
10. |
Haque R, Chun E, Howell JC, et al. MicroRNA-30b-mediated regulation of catalase expression in human ARPE-19 cells[J/OL]. PLoS One, 2012, 7(8): e42542[2012-08-06]. https://pubmed.ncbi.nlm.nih.gov/22880027/. DOI: 10.1371/journal.pone.0042542.
|
11. |
Tian B, Maidana DE, Dib B, et al. MiR-17-3p exacerbates oxidative damage in human retinal pigment epithelial cells[J/OL]. PLoS One, 2016, 11(8): e0160887[2016-08-09]. https://pubmed.ncbi.nlm.nih.gov/27505139/. DOI: 10.1371/journal.pone.0160887.
|
12. |
Jadeja RN, Jones MA, Abdelrahman AA, et al. Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in RPE and protects against oxidative stress-induced outer retinal degeneration[J/OL]. Redox Biol, 2020, 1(28): 101336[2019-09-29]. https://pubmed.ncbi.nlm.nih.gov/31590045/. DOI: 10.1016/j.redox.2019.101336.
|
13. |
Sun W, Zhao L, Song X, et al. MicroRNA-210 modulates the cellular energy metabolism shift during H2O2-induced oxidative stress by repressing ISCU in H9c2 cardiomyocytes[J]. Cell Physiol Biochem, 2017, 43(1): 383-394. DOI: 10.1159/000480417.
|
14. |
Talepoor AM, Rostamian DM, Baghi M, et al. Upregulation of miR-200a and miR-204 in MPP+‐treated differentiated PC12 cells as a model of Parkinson’s disease[J/OL]. Mol Genet Genomic Med, 2019, 7(3): e548[2019-02-03]. https://pubmed.ncbi.nlm.nih.gov/30712312/. DOI: 10.1159/000480417.
|
15. |
Zhou Q, Anderson C, Zhang H, et al. Repression of choroidal neovascularization through actin cytoskeleton pathways by microRNA-24[J]. Mol Ther, 2014, 22(2): 378-389. DOI: 10.1038/mt.2013.243.
|
16. |
Lu JM, Zhang ZZ, Ma X, et al. Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy[J/OL]. Exp Eye Res, 2020, 1(190): 107886[2019-11-21]. https://pubmed.ncbi.nlm.nih.gov/31759996/. DOI: 10.1016/j.exer.2019.107886.
|
17. |
Lin JB, Moolani HV, Sene A, et al. Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration[J/OL]. JCI insight, 2018, 3(7): e120157[2018-04-05]. https://pubmed.ncbi.nlm.nih.gov/29618664/. DOI: 10.1172/jci.insight.120157.
|
18. |
Wang L, Lee AY, Wigg JP, et al. MiR-126 regulation of angiogenesis in age-related macular degeneration in CNV mouse model[J/OL]. Int J Mol Sci, 2016, 17(6): 895[2016-06-07]. https://pubmed.ncbi.nlm.nih.gov/27338342/. DOI: 10.3390/ijms17060895.
|
19. |
Westenskow PD, Kurihara T, Aguilar E, et al. Ras pathway inhibition prevents neovascularization by repressing endothelial cell sprouting[J]. J Clin Invest, 2013, 123(11): 4900-4908. DOI: 10.1172/JCI70230.
|
20. |
Nunes DN, Dias-Neto E, Cardó-Vila M, et al. Synchronous down-modulation of miR-17 family members is an early causative event in the retinal angiogenic switch[J]. Proc Natl Acad Sci USA, 2015, 112(12): 3770-3775. DOI: 10.1073/pnas.1500008112.
|
21. |
Liu CH, Huang S, BrittonWR, et al. MicroRNAs in vascular eye diseases[J/OL]. Int J Mol Sci, 2020, 21(2): 649[2019-01-19]. https://pubmed.ncbi.nlm.nih.gov/31963809/. DOI: 10.3390/ijms21020649.
|
22. |
Blasiak J, Watala C, Tuuminen R, et al. Expression of VEGFA-regulating miRNAs and mortality in wet AMD[J]. J Cell Mol Med, 2019, 23(12): 8464-8471. DOI: 10.1111/jcmm.14731.
|
23. |
Elbay A, Ercan Ç, Akbaş F, et al. Three new circulating microRNAs may be associated with wet age-related macular degeneration[J]. Scand J Clin Lab Invest, 2019, 79(6): 388-394. DOI: 10.1080/00365513.2019.1637931.
|
24. |
Walz JM, Wecker T, Zhang PP, et al. Impact of angiogenic activation and inhibition on miRNA profiles of human retinal endothelial cells[J]. Exp Eye Res, 2019, 4(181): 98-104. DOI: 10.1016/j.exer.2019.01.006.
|
25. |
Lian C, Lou H, Zhang J, et al. MicroRNA-24 protects retina from degeneration in rats by down-regulating chitinase-3-like protein 1[J/OL]. Exp Eye Res, 2019, 9(188): 107791[2019-09-03]. https://pubmed.ncbi.nlm.nih.gov/31491426/. DOI: 10.1016/j.exer.2019.107791.
|
26. |
Chu-Tan JA, Rutar M, Saxena K, et al. MicroRNA-124 dysregulation is associated with retinal inflammation and photoreceptor death in the degenerating retina[J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 4094-4105. DOI: 10.1167/iovs.18-24623.
|
27. |
Liu J, Ma Z, Ran Z. MiR-21-3p modulates lipopolysaccharide-induced inflammation and apoptosis via targeting TGS 4 in retinal pigment epithelial cells[J]. Clin Exp Pharmacol Physiol, 2019, 46(10): 883-889. DOI: 10.1111/1440-1681.13142.
|
28. |
Cheng Y, Du L, Jiao H, et al. Mmu-miR-27a-5p-dependent upregulation of MCPIP1 inhibits the inflammatory response in LPS-induced RAW264.7 macrophage cells[J/OL]. Biomed Res Int, 2015, 2015: 607692[2015-07-30]. https://pubmed.ncbi.nlm.nih.gov/26295043/. DOI: 10.1155/2015/607692.
|
29. |
SanGiovanni JP, SanGiovanni PM, Sapieha P, et al. miRNAs, single nucleotide polymorphisms (SNPs) and age-related macular degeneration (AMD)[J]. Clin Chem Lab Med, 2017, 55(5): 763-775. DOI: 10.1515/cclm-2016-0898.
|
30. |
Bhattacharjee S, Zhao Y, Dua P, et al. MicroRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration[J/OL]. PLoS One, 2016, 11(3): e0150211[2016-03-07]. https://pubmed.ncbi.nlm.nih.gov/26949937/. DOI: 10.1371/journal.pone.0150211.
|
31. |
Huang P, Sun J, Wang F, et al. MicroRNA expression patterns involved in amyloid beta-induced retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2017, 58(3): 1726-1735. DOI: 10.1167/iovs.16-20043.
|
32. |
To KKW, Fong W, Tong CWS, et al. Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments[J]. Expert Opin Drug Discov, 2020, 15(1): 63-83. DOI: 10.1080/17460441.2020.1690449.
|
33. |
Askou AL, Alsing S, Benckendorff JNE, et al. Suppression of choroidal neovascularization by AAV-based dual-acting antiangiogenic gene therapy[J]. Mol Ther Nucleic Acids, 2019, 16: 38-50. DOI: 10.1016/j.omtn.2019.01.012.
|