1. |
Verbakel SK, van Huet RAC, Boon CJF, et al. Non-syndromic retinitis pigmentosa[J]. Prog Retin Eye Res, 2018, 66: 157-186. DOI: 10.1016/j.preteyeres.2018.03.005.
|
2. |
Campochiaro PA, Mir TA. The mechanism of cone cell death in retinitis pigmentosa[J]. Prog Retin Eye Res, 2018, 62: 24-37. DOI: 10.1016/j.preteyeres.2017.08.004.
|
3. |
DeAngelis MM, Owen LA, Morrison MA, et al. Genetics of age-related macular degeneration (AMD)[J]. Hum Mol Genet, 2017, 26(R1): R45-R50. DOI: 10.1093/hmg/ddx228.
|
4. |
Gauvain G, Akolkar H, Chaffiol A, et al. Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates[J/OL]. Commun Biol, 2021, 4(1): 125[2021-01-27]. https://pubmed.ncbi.nlm.nih.gov/33504896/. DOI: 10.1038/s42003-020-01594-w.
|
5. |
Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proc Natl Acad Sci USA, 2003, 100(24): 13940-13945. DOI: 10.1073/pnas.1936192100.
|
6. |
Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to on bipolar cells restore visual function in retinal degeneration[J]. Nat Neurosci, 2008, 11(6): 667-675. DOI: 10.1038/nn.2117.
|
7. |
Kleinlogel S, Terpitz U, Legrum B, et al. A gene-fusion strategy for stoichiometric and colocalized expression of light-gated membrane proteins[J]. Nat Methods, 2011, 8(12): 1083-1088. DOI: 10.1038/nmeth.1766.
|
8. |
Simunovic MP, Shen W, Lin JY, et al. Optogenetic approaches to vision restoration[J]. Exp Eye Res, 2019, 178: 15-26. DOI: 10.1016/j.exer.2018.09.003.
|
9. |
Joly S, Francke M, Ulbricht E, et al. Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions[J]. Am J Pathol, 2009, 174(6): 2310-2323. DOI: 10.2353/ajpath.2009.090023.
|
10. |
Hunter JJ, Morgan JI, Merigan WH, et al. The susceptibility of the retina to photochemical damage from visible light[J]. Prog Retin Eye Res, 2012, 31(1): 28-42. DOI: 10.1016/j.preteyeres.2011.11.001.
|
11. |
Sengupta A, Chaffiol A, Mace E, et al. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina[J]. EMBO Mol Med, 2016, 8(11): 1248-1264. DOI: 10.15252/emmm.201505699.
|
12. |
Pan ZH, Ganjawala TH, Lu Q, et al. ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration[J/OL]. PLoS One, 2014, 9(6): e98924[2014-06-05]. https://pubmed.ncbi.nlm.nih.gov/24901492/. DOI: 10.1371/journal.pone.0098924.
|
13. |
Ganjawala TH, Lu Q, Fenner MD, et al. Improved CoChR variants restore visual acuity and contrast sensitivity in a mouse model of blindness under ambient light conditions[J]. Mol Ther, 2019, 27(6): 1195-1205. DOI: 10.1016/j.ymthe.2019.04.002.
|
14. |
Kleinlogel S, Feldbauer K, Dempski RE, et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh[J]. Nat Neurosci, 2011, 14(4): 513-518. DOI: 10.1038/nn.2776.
|
15. |
Chaffiol A, Caplette R, Jaillard C, et al. A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina[J]. Mol Ther, 2017, 25(11): 2546-2560. DOI: 10.1016/j.ymthe.2017.07.011.
|
16. |
Chow BY, Han X, Dobry AS, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps[J]. Nature, 2010, 463(7277): 98-102. DOI: 10.1038/nature08652.
|
17. |
Idnurm A, Howlett BJ. Characterization of an opsin gene from the ascomycete leptosphaeria maculans[J]. Genome, 2001, 44(2): 167-171. DOI: 10.1139/g00-113.
|
18. |
Gradinaru V, Thompson KR, Deisseroth K. eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications[J]. Brain Cell Biol, 2008, 36(1-4): 129-139. DOI: 10.1007/s11068-008-9027-6.
|
19. |
Chuong AS, Miri ML, Busskamp V, et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin[J]. Nat Neurosci, 2014, 17(8): 1123-1129. DOI: 10.1038/nn.3752.
|
20. |
Claes E, Seeliger M, Michalakis S, et al. Morphological characterization of the retina of the CNGA3(-/-)Rho(-/-) mutant mouse lacking functional cones and rods[J]. Invest Ophthalmol Vis Sci, 2004, 45(6): 2039-2048. DOI: 10.1167/iovs.03-0741.
|
21. |
Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa[J]. Science, 2010, 329(5990): 413-417. DOI: 10.1126/science.1190897.
|
22. |
Khabou H, Garita-Hernandez M, Chaffiol A, et al. Noninvasive gene delivery to foveal cones for vision restoration[J/OL]. JCI Insight, 2018, 3(2): e96029[2018-01-25]. https://pubmed.ncbi.nlm.nih.gov/29367457/. DOI: 10.1172/jci.insight.96029.
|
23. |
Garita-Hernandez M, Lampic M, Chaffiol A, et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors[J/OL]. Nat Commun, 2019, 10(1): 4524[2019-10-04]. https://pubmed.ncbi.nlm.nih.gov/31586094/. DOI: 10.1038/s41467-019-12330-2.
|
24. |
Garita-Hernandez M, Guibbal L, Toualbi L, et al. Optogenetic light sensors in human retinal organoids[J/OL]. Front Neurosci, 2018, 12: 789[2018-11-02]. https://pubmed.ncbi.nlm.nih.gov/30450028/. DOI: 10.3389/fnins.2018.00789.
|
25. |
Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, et al. Restoration of vision with ectopic expression of human rod opsin[J]. Curr Biol, 2015, 25(16): 2111-2122. DOI: 10.1016/j.cub.2015.07.029.
|
26. |
Gaub BM, Berry MH, Holt AE, et al. Optogenetic vision restoration using rhodopsin for enhanced sensitivity[J]. Mol Ther, 2015, 23(10): 1562-1571. DOI: 10.1038/mt.2015.121.
|
27. |
De Silva SR, Barnard AR, Hughes S, et al. Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy[J]. Proc Natl Acad Sci USA, 2017, 114(42): 11211-11216. DOI: 10.1073/pnas.1701589114.
|
28. |
Berry MH, Holt A, Salari A, et al. Restoration of high-sensitivity and adapting vision with a cone opsin[J/OL]. Nat Commun, 2019, 10(1): 1221[2019-03-15]. https://pubmed.ncbi.nlm.nih.gov/30874546/. DOI: 10.1038/s41467-019-09124-x.
|
29. |
van Wyk M, Pielecka-Fortuna J, Lowel S, et al. Restoring the on switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool[J/OL]. PLoS Biol, 2015, 13(5): e1002143[2015-05-07]. https://pubmed.ncbi.nlm.nih.gov/25950461/. DOI: 10.1371/journal.pbio.1002143.
|
30. |
Singh MS, Charbel Issa P, Butler R, et al. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation[J]. Proc Natl Acad Sci USA, 2013, 110(3): 1101-1106. DOI: 10.1073/pnas.1119416110.
|
31. |
Barber AC, Hippert C, Duran Y, et al. Repair of the degenerate retina by photoreceptor transplantation[J]. Proc Natl Acad Sci USA, 2013, 110(1): 354-359. DOI: 10.1073/pnas.1212677110.
|
32. |
Mandai M, Fujii M, Hashiguchi T, et al. iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice[J]. Stem Cell Reports, 2017, 8(1): 69-83. DOI: 10.1016/j.stemcr.2016.12.008.
|
33. |
Iraha S, Tu HY, Yamasaki S, et al. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation[J]. Stem Cell Reports, 2018, 10(3): 1059-1074. DOI: 10.1016/j.stemcr.2018.01.032.
|
34. |
Eberle D, Schubert S, Postel K, et al. Increased integration of transplanted CD73-positive photoreceptor precursors into adult mouse retina[J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6462-6471. DOI: 10.1167/iovs.11-7399.
|
35. |
da Cruz L, Dorn JD, Humayun MS, et al. Five-year safety and performance results from the argus Ⅱ retinal prosthesis system clinical trial[J]. Ophthalmology, 2016, 123(10): 2248-2254. DOI: 10.1016/j.ophtha.2016.06.049.
|
36. |
Edwards TL, Cottriall CL, Xue K, et al. Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa[J]. Ophthalmology, 2018, 125(3): 432-443. DOI: 10.1016/j.ophtha.2017.09.019.
|
37. |
Shivdasani MN, Sinclair NC, Gillespie LN, et al. Identification of characters and localization of images using direct multiple-electrode stimulation with a suprachoroidal retinal prosthesis[J]. Invest Ophthalmol Vis Sci, 2017, 58(10): 3962-3974. DOI: 10.1167/iovs.16-21311.
|
38. |
Soltan A, Barrett JM, Maaskant P, et al. A head mounted device stimulator for optogenetic retinal prosthesis[J/OL]. J Neural Eng, 2018, 15(6): 065002[2018-08-29]. https://pubmed.ncbi.nlm.nih.gov/30156188/. DOI: 10.1088/1741-2552/aadd55.
|
39. |
Soltan A, McGovern B, Drakakis E, et al. High density, high radiance $\mu$ LED matrix for optogenetic retinal prostheses and planar neural stimulation[J]. IEEE Trans Biomed Circuits Syst, 2017, 11(2): 347-359. DOI: 10.1109/TBCAS.2016.2623949.
|
40. |
Montazeri L, El Zarif N, Trenholm S, et al. Optogenetic stimulation for restoring vision to patients suffering from retinal degenerative diseases: current strategies and future directions[J]. IEEE Trans Biomed Circuits Syst, 2019, 13(6): 1792-1807. DOI: 10.1109/tbcas.2019.2951298.
|