1. |
Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma[J]. Ophthalmology, 2014, 121(7): 1322-1332. DOI: 10.1016/j.ophtha.2014.01.021.
|
2. |
Lévêque PM, Zéboulon P, Brasnu E, et al. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography[J/OL]. J Ophthalmol, 2016, 2016: 6956717[2016-02-22]. https://pubmed.ncbi.nlm.nih.gov/26998352/. DOI: 10.1155/2016/6956717.
|
3. |
Rao HL, Pradhan ZS, Weinreb RN, et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma[J]. Am J Ophthalmol, 2016, 171: 75-83. DOI: 10.1016/j.ajo.2016.08.030.
|
4. |
李若诗, 潘英姿. 血管因素与原发性青光眼相关性的研究进展[J]. 中华眼科杂志, 2017, 53(10): 791-796. DOI: 10.3760/cma.j.issn.0412-4081.2017.10.016.Li RS, Pan YZ. The vessel and primary glaucoma[J]. Chin J Ophthalmol, 2017, 53(10): 791-796. DOI: 10.3760/cma.j.issn.0412-4081.2017.10.016.
|
5. |
Akagi T, Iida Y, Nakanishi H, et al. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study[J]. Am J Ophthalmol, 2016, 168: 237-249. DOI: 10.1016/j.ajo.2016.06.009.
|
6. |
Shin JW, Lee J, Kwon J, et al. Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity[J]. Br J Ophthalmol, 2017, 101(12): 1666-1672. DOI: 10.1136/bjophthalmol-2017-310180.
|
7. |
Hou H, Moghimi S, Zangwill LM, et al. Macula vessel density and thickness in early primary open angle glaucoma[J]. Am J Ophthalmol, 2019, 199: 120-132. DOI: 10.1016/j.ajo.2018.11.012.
|
8. |
Wang Y, Xin C, Li M, et al. Macular vessel density versus ganglion cell complex thickness for detection of early primary open-angle glaucoma[J/OL]. BMC Ophthalmology, 2020, 20: 17[2020-01-08]. https://pubmed.ncbi.nlm.nih.gov/31914956/. DOI: 10.1186/s12886-020-1304-x.
|
9. |
Kim JS, Kim YK, Baek SU, et al. Topographic correlation between macular superficial microvessel density and ganglion cell-inner plexiform layer thickness in glaucoma-suspect and early normal-tension glaucoma[J]. Br J Ophthalmol, 2020, 104(1): 104-109. DOI: 10.1136/bjophthalmol-2018-313732.
|
10. |
Chen CL, Bojikian KD, Wen JC, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss[J]. JAMA Ophthalmol, 2017, 135(5): 461-468. DOI: 10.1001/jamaophthalmol.2017.0261.
|
11. |
Akil H, Huang AS, Francis BA, et al. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes[J/OL]. PLoS One, 2017, 12(2): e0170476[2017-02-02]. https://pubmed.ncbi.nlm.nih.gov/28152070/. DOI: 10.1371/journal.pone.0170476.
|
12. |
Bowd C, Zangwill LM, Weinreb RN, et al. Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma[J]. Am J Ophthalmol, 2017, 175: 37-44. DOI: 10.1016/j.ajo.2016.11.010.
|
13. |
Moghimi S, Bowd C, Zangwill LM, et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma[J]. Ophthalmol, 2019, 126(7): 980-988. DOI: 10.1016/j.ophtha.2019.03.003.
|
14. |
Kim GN, Lee EJ, Kim H, et al. Dynamic range of the peripapillary retinal vessel density for detecting glaucomatous visual field damage[J]. Ophthalmol Glaucoma, 2019, 2(3): 103-110. DOI: 10.1016/j.ogla.2018.11.007.
|
15. |
Rao HL, Pradhan ZS, Weinreb RN, et al. Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma[J]. J Glaucoma, 2017, 26(6): 548-554. DOI: 10.1097/IJG.0000000000000670.
|
16. |
Rao HL, Pradhan ZS, Weinreb RN, et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma[J]. Am J Ophthalmol, 2017, 177: 106-115. DOI: 10.1016/j.ajo.2017.02.020.
|
17. |
Ghahari E, Bowd C, Zangwill LM, et al. Association of macular and circumpapillary microvasculature with visual field sensitivity in advanced glaucoma[J]. Am J Ophthalmol, 2019, 204: 51-61. DOI: 10.1016/j.ajo.2019.03.004.
|
18. |
Mastropasqua R, D'Aloisio R, Agnifili L, et al. Functional and structural reliability of optic nerve head measurements in healthy eyes by means of optical coherence tomography angiography[J/OL]. Medicina (Kaunas), 2020, 56(1): 44[2020-01-20]. https://pubmed.ncbi.nlm.nih.gov/31968630/. DOI: 10.3390/medicina56010044.
|
19. |
Hosari S, Hohberger B, Theelke L, et al. OCT angiography: measurement of retinal macular microvasculature with spectralis Ⅱ OCT angiography-reliability and reproducibility[J]. Ophthalmologica, 2020, 243(1): 75-84. DOI: 10.1159/000502458.
|
20. |
Taylor L, Bojikian KD, Jung H, et al. Peripapillary and macular microcirculation in glaucoma patients of African and European descent using optical coherence tomography angiography[J]. J Glaucoma, 2020, 29(10): 885-889. DOI: 10.1097/IJG.0000000000001629.
|
21. |
Holló G. Influence of large intraocular pressure reduction on peripapillary oct vessel density in ocular hypertensive and glaucoma eyes[J/OL]. J Glaucoma, 2017, 26: e7-e10[2017-01-26]. https://pubmed.ncbi.nlm.nih.gov/27571444/. DOI: 10.1097/IJG.0000000000000527.
|
22. |
Shoji T, Zangwill LM, Akagi T, et al. Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study[J]. Am J Ophthalmol, 2017, 182: 107-117. DOI: 10.1016/j.ajo.2017.07.011.
|
23. |
Hou HY, Moghimi S, Proudfoot JA, at al. Ganglion cell complex thickness and macular vessel density loss in primary open-angle glaucoma[J]. Ophthalmology, 2020, 127(8): 1043-1052. DOI: 10.1016/j.ophtha.2019.12.030.
|
24. |
Fernández-Vigo JI, Kudsieh B, Macarro-Merino A, et al. Reproducibility of macular and optic nerve head vessel density measurements by swept-source optical coherence tomography angiography[J]. Eur J Ophthalmol, 2020, 30(4): 756-763. DOI: 10.1177/1120672119834472.
|
25. |
Kanamori A, Nakamura M, Tomioka M, et al. Structurefunction relationship among three types of spectral-domain optical coherent tomography instruments in measuring parapapillary retinal nerve fibre layer thickness[J/OL]. Acta Ophthalmol, 2013, 91: e196-e202[2013-05-17]. https://pubmed.ncbi.nlm.nih.gov/23590392/. DOI: 10.1111/aos.12028.
|
26. |
Gopinath K, Sivaswamy J, Mansoori T. Automatic glaucoma assessment from angio-OCT images[C/OL]. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, 2016[2021-03-16]. https://ieeexplore.ieee.org/document/7493242.
|
27. |
Holló G. Comparison of thickness-function and vessel density-function relationship in the superior and inferior macula, and in the superotemporal and inferotemporal peripapillary sectors[J]. J Glaucoma, 2020, 29(3): 168-174. DOI: 10.1097/IJG.0000000000001441.
|
28. |
Abdelrahman AM, Eltanamly RM, Elsanabary Z, et al. Optical coherence tomography angiography in juvenile open angle glaucoma: correlation between structure and perfusion[J]. Int Ophthalmol, 2021, 41(3): 883-889. DOI: 10.1007/s10792-020-01643-7.
|
29. |
Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect[J]. Ophthalmology, 2017, 124(5): 709-719. DOI: 10.1016/j.ophtha.2017.01.004.
|
30. |
Lee SH, Lee EJ, Kim TW, et al. Comparison of vascular-function and structure-function correlations in glaucomatous eyes with high myopia[J]. Br J Ophthalmol, 2020, 104(6): 807-812. DOI: 10.1136/bjophthalmol-2019-314430.
|
31. |
Shin JW, Lee J, Kwon J, et al. Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages[J]. Br J Ophthalmol, 2019, 103(12): 1827-1833. DOI: 10.1136/bjophthalmol-2018-313019.
|
32. |
Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons[J]. Invest Ophthalmol Vis Sci, 2000, 41(3): 741-748. DOI: 10.1097/00004397-200004000-00015.
|
33. |
Wu J, Sebastian RT, Chu CJ, et al. Reduced macular vessel density and capillary perfusion in glaucoma detected using OCT angiography[J]. Curr Eye Res, 2019, 44(5): 533-540. DOI: 10.1080/02713683.2018.1563195.
|
34. |
Chihara E, Dimitrova G, Amano H, et al. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes[J]. Invest Opthalmol Vis Sci, 2017, 58(1): 690-697. DOI: 10.1167/iovs.16-20709.
|
35. |
Rao HL, Pradhan ZS, Weinreb RN, et al. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma[J/OL]. PLoS One, 2017, 12(3): e0173930[2017-03-13]. https://pubmed.ncbi.nlm.nih.gov/28288185/. DOI: 10.1371/journal.pone.0173930.
|
36. |
Ekici E, Moghimi S, Bowd C, et al. Capillary density measured by optical coherence tomography angiography in glaucomatous optic disc phenotypes[J]. Am J Ophthalmol, 2020, 219: 261-270. DOI: 10.1016/j.ajo.2020.06.012.
|
37. |
Hormel T, Hwang TS, Bailey ST, et al. Artificial intelligence in OCT angiography[J/OL]. Prog Retin Eye Res, 2021, 2021: 100965[2021-03-22]. https://pubmed.ncbi.nlm.nih.gov/33766775/. DOI: 10.1016/j.preteyeres.2021.100965.
|
38. |
Govindaswamy N, Ratra D, Dalan D, el al. Vascular changes precede tomographic changes in diabetic eyes without retinopathy and improve artificial intelligence diagnostics[J/OL]. J Biophotonics, 2020, 13(9): e202000107[2020-0618]. https://pubmed.ncbi.nlm.nih.gov/32392370/. DOI: 10.1002/jbio.202000107.
|
39. |
Le D, Alam M, Yao C, et al. Transfer learning for automated OCTA detection of diabetic retinopathy[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 35[2020-07-05]. https://pubmed.ncbi.nlm.nih.gov/32855839/.
|