- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China;
Behcet's Disease (BD) is a multisystem vasculitis characterized by disease alternated with recurrent episodes and remissions, involving genital, oral, ocular uvea, cutaneous, and articular manifestations. The nuclear factor (NF)-κB signaling pathway paly an important role in the BD progression. It encompasses diverse gene, protein, and cellular regulatory mechanisms operating across various levels, alongside microbiological and experimental studies involving animals and cells. At the protein research findings, activation of the NF-κB pathway in BD patients is marked by elevated plasma levels of soluble CD40 ligand, which stimulates neutrophils to release reactive oxygen species and extracellular traps, thereby promoting inflammation. At the cellular research findings, macrophages in BD patients polarize towards classically activated macrophages phenotype through the NF-κB pathway, exacerbating the inflammatory response. The activation of NF-κB is associated with increased expression of anti-apoptotic proteins in T cells, leading to prolonged inflammation. Microbiological investigations reveal that the decreased gut microbiota diversity in BD patients compromises intestinal barrier integrity. NF-κB pathway involvement in regulating neutrophil and type 1 helper T cell (Th) 1/Th17 cell function worsens inflammation. Genetically, BD patients exhibit polymorphisms in immune regulatory genes, which contribute to inflammation through the NF-κB pathway. Mutations in NF-κB-associated genes elevate the risk of BD, while mutations in the endogenous inhibitor A20 lead to abnormal NF-κB activity, sustaining inflammation. Animal experiments and in vitro experiments corroborate the efficacy of NF-κB inhibitors in attenuating inflammation. Targeting upstream inflammatory factors within the NF-κB pathway yields positive outcomes in BD patients. In summary, the NF-κB signaling pathway plays a pivotal role in the development of BD. Developing NF-κB inhibitors may open new avenues for treating BD. Further research is necessary to comprehensively elucidate the precise mechanisms by which NF-κB operates in the pathogenesis of BD, as well as its potential clinical applications in therapy.
Citation: Zheng Chuanzhen, Zhang Xiaomin. Research status and progress of nuclear factor κappa B signaling pathway in Behçet disease. Chinese Journal of Ocular Fundus Diseases, 2023, 39(10): 862-867. doi: 10.3760/cma.j.cn511434-20220523-00318 Copy
1. | Karadag O, Bolek EC. Management of Behcet's syndrome[J]. Rheumatology (Oxford), 2020, 59(Suppl 3): S108-117. DOI: 10.1093/rheumatology/keaa086. |
2. | Kidd DP. Neurological complications of Behcet's syndrome[J]. J Neurol, 2017, 264(10): 2178-2183. DOI: 10.1007/s00415-017-8436-9. |
3. | Watanabe K, Tanida S, Inoue N, et al. Evidence-based diagnosis and clinical practice guidelines for intestinal Behcet's disease 2020 edited by intractable diseases, the Health and Labour Sciences Research Grants[J]. J Gastroenterol, 2020, 55(7): 679-700. DOI: 10.1007/s00535-020-01690-y. |
4. | Davatchi F, Chams-Davatchi C, Shams H, et al. Behcet's disease: epidemiology, clinical manifestations, and diagnosis[J]. Expert Rev Clin Immunol, 2017, 13(1): 57-65. DOI: 10.1080/1744666X.2016.1205486. |
5. | Alpsoy E. Behcet's disease: A comprehensive review with a focus on epidemiology, etiology and clinical features, and management of mucocutaneous lesions[J]. J Dermatol, 2016, 43(6): 620-632. DOI: 10.1111/1346-8138.13381. |
6. | Davatchi F, Shahram F, Chams-Davatchi C, et al. Behcet's disease: from East to West[J]. Clin Rheumatol, 2010, 29(8): 823-833. DOI: 10.1007/s10067-010-1430-6. |
7. | Chen Y, Cai JF, Lin CH, et al. Demography of vascular Behcet's disease with different gender and age: an investigation with 166 Chinese patients[J]. Orphanet J Rare Dis, 2019, 14(1): 88. DOI: 10.1186/s13023-019-1061-1. |
8. | Yang P, Fang W, Meng Q, et al. Clinical features of Chinese patients with Behcet's disease[J]. Ophthalmology, 2008, 115(2): 312-318. DOI: 10.1016/j.ophtha.2007.04.056. |
9. | Salmaninejad A, Zamani MR, Shabgah AG, et al. Behcet's disease: an immunogenetic perspective[J]. J Cell Physiol, 2019, 234(6): 8055-8074. DOI: 10.1002/jcp.27576. |
10. | Sunderkötter CH, Zelger B, Chen KR, et al. Nomenclature of cutaneous vasculitis: dermatologic addendum to the 2012 revised international chapel hill consensus conference nomenclature of vasculitides[J]. Arthritis Rheumatol, 2018, 70(2): 171-184. DOI: 10.1002/art.40375. |
11. | Aksentijevich I, Zhou Q. NF-kappaB pathway in autoinflammatory diseases: dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases[J/OL]. Front Immunol, 2017, 8: 399[2017-04-19]. https://pubmed.ncbi.nlm.nih.gov/28469620/. DOI: 10.3389/fimmu.2017.00399. |
12. | Steiner A, Harapas CR, Masters SL, et al. An update on autoinflammatory diseases: relopathies[J]. Curr Rheumatol Rep, 2018, 20(7): 39. DOI: 10.1007/s11926-018-0749-x. |
13. | Barnes PJ, Karin M. Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory diseases[J]. N Engl J Med, 1997, 336(15): 1066-1071. DOI: 10.1056/NEJM199704103361506. |
14. | Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system[J]. Wiley Interdiscip Rev Syst Biol Med, 2016, 8(3): 227-241. DOI: 10.1002/wsbm.1331. |
15. | Kobayashi M, Ito M, Nakagawa A, et al. Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behcet disease[J]. Histopathology, 2000, 36(4): 362-371. DOI: 10.1046/j.1365-2559.2000.00859.x. |
16. | Yazici C, Köse K, Calis M, et al. Increased advanced oxidation protein products in Behcet's disease: a new activity marker?[J]. Br J Dermatol, 2004, 151(1): 105-111. DOI: 10.1111/j.1365-2133.2004.06003.x. |
17. | Li L, Yu X, Liu J, et al. Neutrophil extracellular traps promote aberrant macrophages activation in Behcet's Disease[J/OL]. Front Immunol, 2020, 11: 590622[2021-02-05]. https://pubmed.ncbi.nlm.nih.gov/33633724/. DOI: 10.3389/fimmu.2020.590622. |
18. | Tang T, Cheng X, Truong B, et al. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint[J/OL]. Pharmacol Ther, 2021, 219: 107709[2020-10-20]. https://pubmed.ncbi.nlm.nih.gov/33091428/. DOI: 10.1016/j.pharmthera.2020.107709. |
19. | Perazzio SF, Soeiro-Pereira PV, Dos Santos VC, et al. Soluble CD40L is associated with increased oxidative burst and neutrophil extracellular trap release in Behcet's disease[J]. Arthritis Res Ther, 2017, 19(1): 235. DOI: 10.1186/s13075-017-1443-5. |
20. | Kadomoto S, Izumi K, Mizokami A. Macrophage polarity and disease control[J]. Int J Mol Sci, 2021, 23(1): 144. DOI: 10.3390/ijms23010144. |
21. | Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J/OL]. Eur J Pharmacol, 2020, 877: 173090[2020-06-15]. https://pubmed.ncbi.nlm.nih.gov/32234529/. DOI: 10.1016/j.ejphar.2020.173090. |
22. | Peng H, Xian D, Liu J, et al. Regulating the polarization of macrophages: a promising approach to vascular dermatosis[J/OL]. J Immunol Res, 2020, 2020: 8148272[2020-07-28]. https://pubmed.ncbi.nlm.nih.gov/32775470/. DOI: 10.1155/2020/8148272. |
23. | Alpsoy E, Kodelja V, Goerdt S, et al. Serum of patients with Behcet's disease induces classical (pro-inflammatory) activation of human macrophages in vitro[J]. Dermatology, 2003, 206(3): 225-232. DOI: 10.1159/000068888. |
24. | Anower AK, Shim JA, Choi B, et al. The role of classical and alternative macrophages in the immunopathogenesis of herpes simplex virus-induced inflammation in a mouse model[J]. J Dermatol Sci, 2014, 73(3): 198-208. DOI: 10.1016/j.jdermsci.2013.11.001. |
25. | Palizgir MT, Akhtari M, Mahmoudi M, et al. Curcumin reduces the expression of interleukin 1beta and the production of interleukin 6 and tumor necrosis factor alpha by M1 macrophages from patients with Behcet's disease[J]. Immunopharmacol Immunotoxicol, 2018, 40(4): 297-302. DOI: 10.1080/08923973.2018.1474921. |
26. | Nakano H, Kirino Y, Takeno M, et al. GWAS-identified CCR1 and IL10 loci contribute to M1 macrophage-predominant inflammation in Behcet's disease[J]. Arthritis Res Ther, 2018, 20(1): 124. DOI: 10.1186/s13075-018-1613-0. |
27. | Arakaki R, Yamada A, Kudo Y, et al. Mechanism of activation-induced cell death of T cells and regulation of FasL expression[J]. Crit Rev Immunol, 2014, 34(4): 301-314. DOI: 10.1615/critrevimmunol.2014009988. |
28. | Frassanito MA, Dammacco R, Cafforio P, et al. Th1 polarization of the immune response in Behcet's disease: a putative pathogenetic role of interleukin-12[J]. Arthritis Rheum, 1999, 42(9): 1967-1974. DOI: 10.1002/1529-0131(199909)42:9<1967::AID-ANR24>3.0.CO;2-Z. |
29. | Todaro M, Zerilli M, Triolo G, et al. NF-kappa B protects Behcet's disease T cells against CD95-induced apoptosis up-regulating antiapoptotic proteins[J]. Arthritis Rheum, 2005, 52(7): 2179-2191. DOI: 10.1002/art.21145. |
30. | Perazzio SF, Pereira PVS, Souza AWS, et al. NF-kappa B pathway is depleted in phagocytes from Behcet's disease patients secondarily to constitutive phosphorylation of the p65 subunit[J]. Arthritis Rheum, 2013, 65(Suppl 1): S1114-1114. |
31. | Mehmood N, Low L, Wallace GR. Behcet's disease-do microbiomes and genetics collaborate in pathogenesis?[J/OL]. Front Immunol, 2021, 12: 648341[2021-05-21]. https://pubmed.ncbi.nlm.nih.gov/34093536/. DOI: 10.3389/fimmu.2021.648341. |
32. | Ye Z, Zhang N, Wu C, et al. A metagenomic study of the gut microbiome in Behcet's disease[J]. Microbiome, 2018, 6(1): 135. DOI: 10.1186/s40168-018-0520-6. |
33. | Wang Q, Yi S, Su G, et al. Changes in the gut microbiome contribute to the development of Behcet's disease via adjuvant effects[J/OL]. Front Cell Dev Biol, 2021, 9: 716760[2021-09-08]. https://pubmed.ncbi.nlm.nih.gov/34568329/. DOI: 10.3389/fcell.2021.716760. |
34. | Evani SJ, Karna SLR, Seshu J, et al. Pirfenidone regulates LPS mediated activation of neutrophils[J/OL]. Sci Rep, 2020, 10(1): 19936[2020-11-17]. https://pubmed.ncbi.nlm.nih.gov/33203891/. DOI: 10.1038/s41598-020-76271-3. |
35. | Xiang Q, Chen L, Hou S, et al. TRAF5 and TRAF3IP2 gene polymorphisms are associated with Behcet's disease and Vogt-Koyanagi-Harada syndrome: a case-control study[J/OL]. PLoS One, 2014, 9(1): e84214[2014-01-08]. https://pubmed.ncbi.nlm.nih.gov/24416204/. DOI: 10.1371/journal.pone.0084214. |
36. | Yalcin B, Atakan N, Alli N. The functional role of nuclear factor kappa-kappaB1 -94 ins/del ATTG promotor gene polymorphism in Behcet's disease: an exploratory study[J]. Clin Exp Dermatol, 2008, 33(5): 629-633. DOI: 10.1111/j.1365-2230.2008.02786.x. |
37. | Oner T, Yenmis G, Tombulturk K, et al. Association of Pre-miRNA-499 rs3746444 and pre-miRNA-146a rs2910164 polymorphisms and susceptibility to Behcet's disease[J]. Genet Test Mol Biomarkers, 2015, 19(8): 424-430. DOI: 10.1089/gtmb.2015.0016. |
38. | Karban AS, Okazaki T, Panhuysen CI, et al. Functional annotation of a novel NFΚB1 promoter polymorphism that increases risk for ulcerative colitis[J]. Hum Mol Genet, 2004, 13(1): 35-45. DOI: 10.1093/hmg/ddh008. |
39. | Badran YR, Dedeoglu F, Leyva Castillo JM, et al. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration[J]. J Exp Med, 2017, 214(7): 1937-1947. DOI: 10.1084/jem.20160724. |
40. | Huang D, Yang L, Liu Y, et al. Functional polymorphisms in NFkappaB1/IkappaBalpha predict risks of chronic obstructive pulmonary disease and lung cancer in Chinese[J]. Hum Genet, 2013, 132(4): 451-460. DOI: 10.1007/s00439-013-1264-9. |
41. | Yenmis G, Oner T, Cam C, et al. Association of NFΚB1 and NFΚBIA polymorphisms in relation to susceptibility of Behcet's disease[J]. Scand J Immunol, 2015, 81(1): 81-86. DOI: 10.1111/sji.12251. |
42. | Catrysse L, Vereecke L, Beyaert R, et al. A20 in inflammation and autoimmunity[J]. Trends Immunol, 2014, 35(1): 22-31. DOI: 10.1016/j.it.2013.10.005. |
43. | Li H, Liu Q, Hou S, et al. TNFAIP3 gene polymorphisms confer risk for Behcet's disease in a Chinese Han population[J]. Hum Genet, 2013, 132(3): 293-300. DOI: 10.1007/s00439-012-1250-7. |
44. | Ortiz-Fernandez L, Garcia-Lozano JR, Montes-Cano MA, et al. Lack of association of TNFAIP3 and JAK1 with Behcet's disease in the European population[J]. Clin Exp Rheumatol, 2015, 33(Suppl 94): S36-39. |
45. | Shigemura T, Kaneko N, Kobayashi N, et al. Novel heterozygous C243Y A20/TNFAIP3 gene mutation is responsible for chronic inflammation in autosomal-dominant Behcet's disease[J/OL]. RMD Open, 2016, 2(1): e000223[2016-05-05]. https://pubmed.ncbi.nlm.nih.gov/27175295/. DOI: 10.1136/rmdopen-2015-000223. |
46. | Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease[J]. Nat Genet, 2016, 48(1): 67-73. DOI: 10.1038/ng.3459. |
47. | Ohnishi H, Kawamoto N, Seishima M, et al. A Japanese family case with juvenile onset Behcet's disease caused by TNFAIP3 mutation[J]. Allergol Int, 2017, 66(1): 146-148. DOI: 10.1016/j.alit.2016.06.006. |
48. | Dong X, Liu L, Wang Y, et al. Novel heterogeneous mutation of TNFAIP3 in a Chinese patient with Behcet-like phenotype and persistent EBV viremia[J]. J Clin Immunol, 2019, 39(2): 188-194. DOI: 10.1007/s10875-019-00604-9. |
49. | He T, Huang Y, Luo Y, et al. Haploinsufficiency of A20 due to novel mutations in TNFAIP3[J]. J Clin Immunol, 2020, 40(5): 741-751. DOI: 10.1007/s10875-020-00792-9. |
50. | He Y, Wang C, Su G, et al. Decreased expression of A20 is associated with ocular Behcet's disease (BD) but not with Vogt-Koyanagi-Harada (VKH) disease[J]. Br J Ophthalmol, 2018, 102(8): 1167-1172. DOI: 10.1136/bjophthalmol-2017-311707. |
51. | Hu J, Yi S, Wang C, et al. A20 inhibits intraocular inflammation in mice by regulating the function of CD4+T cells and RPE cells[J/OL]. Front Immunol, 2020, 11: 603939[2021-02-04]. https://pubmed.ncbi.nlm.nih.gov/33613524/. DOI: 10.3389/fimmu.2020.603939. |
52. | Kadowaki T, Ohnishi H, Kawamoto N, et al. Haploinsufficiency of A20 causes autoinflammatory and autoimmune disorders[J]. J Allergy Clin Immunol, 2018, 141(4): 1485-1488. DOI: 10.1016/j.jaci.2017.10.039. |
53. | Havnaer A, Han G. Autoinflammatory disorders: a review and update on pathogenesis and treatment[J]. Am J Clin Dermatol, 2019, 20(4): 539-564. DOI: 10.1007/s40257-019-00440-y. |
54. | Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes[J]. Annu Rev Med, 2014, 65: 223-244. DOI: 10.1146/annurev-med-061512-150641. |
55. | Jarosz-Griffiths HH, Holbrook J, Lara-Reyna S, et al. TNF receptor signalling in autoinflammatory diseases[J]. Int Immunol, 2019, 31(10): 639-648. DOI: 10.1093/intimm/dxz024. |
56. | Cantarini L, Lopalco G, Caso F, et al. Effectiveness and tuberculosis-related safety profile of interleukin-1 blocking agents in the management of Behcet's disease[J]. Autoimmun Rev, 2015, 14(1): 1-9. DOI: 10.1016/j.autrev.2014.08.008. |
57. | Calvo-Rio V, Blanco R, Beltran E, et al. Anti-TNF-alpha therapy in patients with refractory uveitis due to Behcet's disease: a 1-year follow-up study of 124 patients[J]. Rheumatology (Oxford), 2014, 53(12): 2223-2231. DOI: 10.1093/rheumatology/keu266. |
58. | Iwata D, Kitaichi N, Miyazaki A, et al. Amelioration of experimental autoimmune uveoretinitis with nuclear factor-kappaB Inhibitor dehydroxy methyl epoxyquinomicin in mice[J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2077-2084. DOI: 10.1167/iovs.09-4030. |
59. | Hsu SM, Yang CH, Shen FH, et al. Proteasome inhibitor bortezomib suppresses nuclear factor-kappa B activation and ameliorates eye inflammation in experimental autoimmune uveitis[J/OL]. Mediators Inflamm, 2015, 2015: 847373[2015-01-12]. https://pubmed.ncbi.nlm.nih.gov/25653480/. DOI: 10.1155/2015/847373. |
60. | Hsu SM, Yang CH, Tsai HY, et al. Chitosan oligosaccharides suppress nuclear factor-kappa B activation and ameliorate experimental autoimmune uveoretinitis in mice[J/OL]. Int J Mol Sci, 2020, 21(21): 8326[2020-11-06]. https://pubmed.ncbi.nlm.nih.gov/33171990/. DOI: 10.3390/ijms21218326. |
61. | Kitamei H, Iwabuchi K, Namba K, et al. Amelioration of experimental autoimmune uveoretinitis (EAU) with an inhibitor of nuclear factor-kappaB (NF-kappaB), pyrrolidine dithiocarbamate[J]. J Leukoc Biol, 2006, 79(6): 1193-1201. DOI: 10.1189/jlb.0805453. |
- 1. Karadag O, Bolek EC. Management of Behcet's syndrome[J]. Rheumatology (Oxford), 2020, 59(Suppl 3): S108-117. DOI: 10.1093/rheumatology/keaa086.
- 2. Kidd DP. Neurological complications of Behcet's syndrome[J]. J Neurol, 2017, 264(10): 2178-2183. DOI: 10.1007/s00415-017-8436-9.
- 3. Watanabe K, Tanida S, Inoue N, et al. Evidence-based diagnosis and clinical practice guidelines for intestinal Behcet's disease 2020 edited by intractable diseases, the Health and Labour Sciences Research Grants[J]. J Gastroenterol, 2020, 55(7): 679-700. DOI: 10.1007/s00535-020-01690-y.
- 4. Davatchi F, Chams-Davatchi C, Shams H, et al. Behcet's disease: epidemiology, clinical manifestations, and diagnosis[J]. Expert Rev Clin Immunol, 2017, 13(1): 57-65. DOI: 10.1080/1744666X.2016.1205486.
- 5. Alpsoy E. Behcet's disease: A comprehensive review with a focus on epidemiology, etiology and clinical features, and management of mucocutaneous lesions[J]. J Dermatol, 2016, 43(6): 620-632. DOI: 10.1111/1346-8138.13381.
- 6. Davatchi F, Shahram F, Chams-Davatchi C, et al. Behcet's disease: from East to West[J]. Clin Rheumatol, 2010, 29(8): 823-833. DOI: 10.1007/s10067-010-1430-6.
- 7. Chen Y, Cai JF, Lin CH, et al. Demography of vascular Behcet's disease with different gender and age: an investigation with 166 Chinese patients[J]. Orphanet J Rare Dis, 2019, 14(1): 88. DOI: 10.1186/s13023-019-1061-1.
- 8. Yang P, Fang W, Meng Q, et al. Clinical features of Chinese patients with Behcet's disease[J]. Ophthalmology, 2008, 115(2): 312-318. DOI: 10.1016/j.ophtha.2007.04.056.
- 9. Salmaninejad A, Zamani MR, Shabgah AG, et al. Behcet's disease: an immunogenetic perspective[J]. J Cell Physiol, 2019, 234(6): 8055-8074. DOI: 10.1002/jcp.27576.
- 10. Sunderkötter CH, Zelger B, Chen KR, et al. Nomenclature of cutaneous vasculitis: dermatologic addendum to the 2012 revised international chapel hill consensus conference nomenclature of vasculitides[J]. Arthritis Rheumatol, 2018, 70(2): 171-184. DOI: 10.1002/art.40375.
- 11. Aksentijevich I, Zhou Q. NF-kappaB pathway in autoinflammatory diseases: dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases[J/OL]. Front Immunol, 2017, 8: 399[2017-04-19]. https://pubmed.ncbi.nlm.nih.gov/28469620/. DOI: 10.3389/fimmu.2017.00399.
- 12. Steiner A, Harapas CR, Masters SL, et al. An update on autoinflammatory diseases: relopathies[J]. Curr Rheumatol Rep, 2018, 20(7): 39. DOI: 10.1007/s11926-018-0749-x.
- 13. Barnes PJ, Karin M. Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory diseases[J]. N Engl J Med, 1997, 336(15): 1066-1071. DOI: 10.1056/NEJM199704103361506.
- 14. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system[J]. Wiley Interdiscip Rev Syst Biol Med, 2016, 8(3): 227-241. DOI: 10.1002/wsbm.1331.
- 15. Kobayashi M, Ito M, Nakagawa A, et al. Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behcet disease[J]. Histopathology, 2000, 36(4): 362-371. DOI: 10.1046/j.1365-2559.2000.00859.x.
- 16. Yazici C, Köse K, Calis M, et al. Increased advanced oxidation protein products in Behcet's disease: a new activity marker?[J]. Br J Dermatol, 2004, 151(1): 105-111. DOI: 10.1111/j.1365-2133.2004.06003.x.
- 17. Li L, Yu X, Liu J, et al. Neutrophil extracellular traps promote aberrant macrophages activation in Behcet's Disease[J/OL]. Front Immunol, 2020, 11: 590622[2021-02-05]. https://pubmed.ncbi.nlm.nih.gov/33633724/. DOI: 10.3389/fimmu.2020.590622.
- 18. Tang T, Cheng X, Truong B, et al. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint[J/OL]. Pharmacol Ther, 2021, 219: 107709[2020-10-20]. https://pubmed.ncbi.nlm.nih.gov/33091428/. DOI: 10.1016/j.pharmthera.2020.107709.
- 19. Perazzio SF, Soeiro-Pereira PV, Dos Santos VC, et al. Soluble CD40L is associated with increased oxidative burst and neutrophil extracellular trap release in Behcet's disease[J]. Arthritis Res Ther, 2017, 19(1): 235. DOI: 10.1186/s13075-017-1443-5.
- 20. Kadomoto S, Izumi K, Mizokami A. Macrophage polarity and disease control[J]. Int J Mol Sci, 2021, 23(1): 144. DOI: 10.3390/ijms23010144.
- 21. Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J/OL]. Eur J Pharmacol, 2020, 877: 173090[2020-06-15]. https://pubmed.ncbi.nlm.nih.gov/32234529/. DOI: 10.1016/j.ejphar.2020.173090.
- 22. Peng H, Xian D, Liu J, et al. Regulating the polarization of macrophages: a promising approach to vascular dermatosis[J/OL]. J Immunol Res, 2020, 2020: 8148272[2020-07-28]. https://pubmed.ncbi.nlm.nih.gov/32775470/. DOI: 10.1155/2020/8148272.
- 23. Alpsoy E, Kodelja V, Goerdt S, et al. Serum of patients with Behcet's disease induces classical (pro-inflammatory) activation of human macrophages in vitro[J]. Dermatology, 2003, 206(3): 225-232. DOI: 10.1159/000068888.
- 24. Anower AK, Shim JA, Choi B, et al. The role of classical and alternative macrophages in the immunopathogenesis of herpes simplex virus-induced inflammation in a mouse model[J]. J Dermatol Sci, 2014, 73(3): 198-208. DOI: 10.1016/j.jdermsci.2013.11.001.
- 25. Palizgir MT, Akhtari M, Mahmoudi M, et al. Curcumin reduces the expression of interleukin 1beta and the production of interleukin 6 and tumor necrosis factor alpha by M1 macrophages from patients with Behcet's disease[J]. Immunopharmacol Immunotoxicol, 2018, 40(4): 297-302. DOI: 10.1080/08923973.2018.1474921.
- 26. Nakano H, Kirino Y, Takeno M, et al. GWAS-identified CCR1 and IL10 loci contribute to M1 macrophage-predominant inflammation in Behcet's disease[J]. Arthritis Res Ther, 2018, 20(1): 124. DOI: 10.1186/s13075-018-1613-0.
- 27. Arakaki R, Yamada A, Kudo Y, et al. Mechanism of activation-induced cell death of T cells and regulation of FasL expression[J]. Crit Rev Immunol, 2014, 34(4): 301-314. DOI: 10.1615/critrevimmunol.2014009988.
- 28. Frassanito MA, Dammacco R, Cafforio P, et al. Th1 polarization of the immune response in Behcet's disease: a putative pathogenetic role of interleukin-12[J]. Arthritis Rheum, 1999, 42(9): 1967-1974. DOI: 10.1002/1529-0131(199909)42:9<1967::AID-ANR24>3.0.CO;2-Z.
- 29. Todaro M, Zerilli M, Triolo G, et al. NF-kappa B protects Behcet's disease T cells against CD95-induced apoptosis up-regulating antiapoptotic proteins[J]. Arthritis Rheum, 2005, 52(7): 2179-2191. DOI: 10.1002/art.21145.
- 30. Perazzio SF, Pereira PVS, Souza AWS, et al. NF-kappa B pathway is depleted in phagocytes from Behcet's disease patients secondarily to constitutive phosphorylation of the p65 subunit[J]. Arthritis Rheum, 2013, 65(Suppl 1): S1114-1114.
- 31. Mehmood N, Low L, Wallace GR. Behcet's disease-do microbiomes and genetics collaborate in pathogenesis?[J/OL]. Front Immunol, 2021, 12: 648341[2021-05-21]. https://pubmed.ncbi.nlm.nih.gov/34093536/. DOI: 10.3389/fimmu.2021.648341.
- 32. Ye Z, Zhang N, Wu C, et al. A metagenomic study of the gut microbiome in Behcet's disease[J]. Microbiome, 2018, 6(1): 135. DOI: 10.1186/s40168-018-0520-6.
- 33. Wang Q, Yi S, Su G, et al. Changes in the gut microbiome contribute to the development of Behcet's disease via adjuvant effects[J/OL]. Front Cell Dev Biol, 2021, 9: 716760[2021-09-08]. https://pubmed.ncbi.nlm.nih.gov/34568329/. DOI: 10.3389/fcell.2021.716760.
- 34. Evani SJ, Karna SLR, Seshu J, et al. Pirfenidone regulates LPS mediated activation of neutrophils[J/OL]. Sci Rep, 2020, 10(1): 19936[2020-11-17]. https://pubmed.ncbi.nlm.nih.gov/33203891/. DOI: 10.1038/s41598-020-76271-3.
- 35. Xiang Q, Chen L, Hou S, et al. TRAF5 and TRAF3IP2 gene polymorphisms are associated with Behcet's disease and Vogt-Koyanagi-Harada syndrome: a case-control study[J/OL]. PLoS One, 2014, 9(1): e84214[2014-01-08]. https://pubmed.ncbi.nlm.nih.gov/24416204/. DOI: 10.1371/journal.pone.0084214.
- 36. Yalcin B, Atakan N, Alli N. The functional role of nuclear factor kappa-kappaB1 -94 ins/del ATTG promotor gene polymorphism in Behcet's disease: an exploratory study[J]. Clin Exp Dermatol, 2008, 33(5): 629-633. DOI: 10.1111/j.1365-2230.2008.02786.x.
- 37. Oner T, Yenmis G, Tombulturk K, et al. Association of Pre-miRNA-499 rs3746444 and pre-miRNA-146a rs2910164 polymorphisms and susceptibility to Behcet's disease[J]. Genet Test Mol Biomarkers, 2015, 19(8): 424-430. DOI: 10.1089/gtmb.2015.0016.
- 38. Karban AS, Okazaki T, Panhuysen CI, et al. Functional annotation of a novel NFΚB1 promoter polymorphism that increases risk for ulcerative colitis[J]. Hum Mol Genet, 2004, 13(1): 35-45. DOI: 10.1093/hmg/ddh008.
- 39. Badran YR, Dedeoglu F, Leyva Castillo JM, et al. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration[J]. J Exp Med, 2017, 214(7): 1937-1947. DOI: 10.1084/jem.20160724.
- 40. Huang D, Yang L, Liu Y, et al. Functional polymorphisms in NFkappaB1/IkappaBalpha predict risks of chronic obstructive pulmonary disease and lung cancer in Chinese[J]. Hum Genet, 2013, 132(4): 451-460. DOI: 10.1007/s00439-013-1264-9.
- 41. Yenmis G, Oner T, Cam C, et al. Association of NFΚB1 and NFΚBIA polymorphisms in relation to susceptibility of Behcet's disease[J]. Scand J Immunol, 2015, 81(1): 81-86. DOI: 10.1111/sji.12251.
- 42. Catrysse L, Vereecke L, Beyaert R, et al. A20 in inflammation and autoimmunity[J]. Trends Immunol, 2014, 35(1): 22-31. DOI: 10.1016/j.it.2013.10.005.
- 43. Li H, Liu Q, Hou S, et al. TNFAIP3 gene polymorphisms confer risk for Behcet's disease in a Chinese Han population[J]. Hum Genet, 2013, 132(3): 293-300. DOI: 10.1007/s00439-012-1250-7.
- 44. Ortiz-Fernandez L, Garcia-Lozano JR, Montes-Cano MA, et al. Lack of association of TNFAIP3 and JAK1 with Behcet's disease in the European population[J]. Clin Exp Rheumatol, 2015, 33(Suppl 94): S36-39.
- 45. Shigemura T, Kaneko N, Kobayashi N, et al. Novel heterozygous C243Y A20/TNFAIP3 gene mutation is responsible for chronic inflammation in autosomal-dominant Behcet's disease[J/OL]. RMD Open, 2016, 2(1): e000223[2016-05-05]. https://pubmed.ncbi.nlm.nih.gov/27175295/. DOI: 10.1136/rmdopen-2015-000223.
- 46. Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease[J]. Nat Genet, 2016, 48(1): 67-73. DOI: 10.1038/ng.3459.
- 47. Ohnishi H, Kawamoto N, Seishima M, et al. A Japanese family case with juvenile onset Behcet's disease caused by TNFAIP3 mutation[J]. Allergol Int, 2017, 66(1): 146-148. DOI: 10.1016/j.alit.2016.06.006.
- 48. Dong X, Liu L, Wang Y, et al. Novel heterogeneous mutation of TNFAIP3 in a Chinese patient with Behcet-like phenotype and persistent EBV viremia[J]. J Clin Immunol, 2019, 39(2): 188-194. DOI: 10.1007/s10875-019-00604-9.
- 49. He T, Huang Y, Luo Y, et al. Haploinsufficiency of A20 due to novel mutations in TNFAIP3[J]. J Clin Immunol, 2020, 40(5): 741-751. DOI: 10.1007/s10875-020-00792-9.
- 50. He Y, Wang C, Su G, et al. Decreased expression of A20 is associated with ocular Behcet's disease (BD) but not with Vogt-Koyanagi-Harada (VKH) disease[J]. Br J Ophthalmol, 2018, 102(8): 1167-1172. DOI: 10.1136/bjophthalmol-2017-311707.
- 51. Hu J, Yi S, Wang C, et al. A20 inhibits intraocular inflammation in mice by regulating the function of CD4+T cells and RPE cells[J/OL]. Front Immunol, 2020, 11: 603939[2021-02-04]. https://pubmed.ncbi.nlm.nih.gov/33613524/. DOI: 10.3389/fimmu.2020.603939.
- 52. Kadowaki T, Ohnishi H, Kawamoto N, et al. Haploinsufficiency of A20 causes autoinflammatory and autoimmune disorders[J]. J Allergy Clin Immunol, 2018, 141(4): 1485-1488. DOI: 10.1016/j.jaci.2017.10.039.
- 53. Havnaer A, Han G. Autoinflammatory disorders: a review and update on pathogenesis and treatment[J]. Am J Clin Dermatol, 2019, 20(4): 539-564. DOI: 10.1007/s40257-019-00440-y.
- 54. Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes[J]. Annu Rev Med, 2014, 65: 223-244. DOI: 10.1146/annurev-med-061512-150641.
- 55. Jarosz-Griffiths HH, Holbrook J, Lara-Reyna S, et al. TNF receptor signalling in autoinflammatory diseases[J]. Int Immunol, 2019, 31(10): 639-648. DOI: 10.1093/intimm/dxz024.
- 56. Cantarini L, Lopalco G, Caso F, et al. Effectiveness and tuberculosis-related safety profile of interleukin-1 blocking agents in the management of Behcet's disease[J]. Autoimmun Rev, 2015, 14(1): 1-9. DOI: 10.1016/j.autrev.2014.08.008.
- 57. Calvo-Rio V, Blanco R, Beltran E, et al. Anti-TNF-alpha therapy in patients with refractory uveitis due to Behcet's disease: a 1-year follow-up study of 124 patients[J]. Rheumatology (Oxford), 2014, 53(12): 2223-2231. DOI: 10.1093/rheumatology/keu266.
- 58. Iwata D, Kitaichi N, Miyazaki A, et al. Amelioration of experimental autoimmune uveoretinitis with nuclear factor-kappaB Inhibitor dehydroxy methyl epoxyquinomicin in mice[J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2077-2084. DOI: 10.1167/iovs.09-4030.
- 59. Hsu SM, Yang CH, Shen FH, et al. Proteasome inhibitor bortezomib suppresses nuclear factor-kappa B activation and ameliorates eye inflammation in experimental autoimmune uveitis[J/OL]. Mediators Inflamm, 2015, 2015: 847373[2015-01-12]. https://pubmed.ncbi.nlm.nih.gov/25653480/. DOI: 10.1155/2015/847373.
- 60. Hsu SM, Yang CH, Tsai HY, et al. Chitosan oligosaccharides suppress nuclear factor-kappa B activation and ameliorate experimental autoimmune uveoretinitis in mice[J/OL]. Int J Mol Sci, 2020, 21(21): 8326[2020-11-06]. https://pubmed.ncbi.nlm.nih.gov/33171990/. DOI: 10.3390/ijms21218326.
- 61. Kitamei H, Iwabuchi K, Namba K, et al. Amelioration of experimental autoimmune uveoretinitis (EAU) with an inhibitor of nuclear factor-kappaB (NF-kappaB), pyrrolidine dithiocarbamate[J]. J Leukoc Biol, 2006, 79(6): 1193-1201. DOI: 10.1189/jlb.0805453.