1. |
惠延年. 精确评估和控制糖尿病视网膜病变的进展[J]. 中华眼底病杂志, 2021, 37(1): 1-4. DOI: 10.3760/cma.j.cn511434-20201224-00634.Hui YN. Accurate assessment and control of the progression of diabetic retinopathy[J]. Chin J Ocul Fundus Dis, 2021, 37(1): 1-4. DOI: 10.3760/cma.j.cn511434-20201224-00634.
|
2. |
周燕, 何秀娃. 糖尿病患者发生DR的影响因素及康柏西普的治疗效果[J]. 国际眼科杂志, 2020, 20(4): 707-710. DOI: 10.3980/j.issn.1672-5123.2020.4.29.Zhou Y, He XW. Influencing factors of diabetic retinopathy in patients with diabetes mellitus and therapeutic effect of Conbercept[J]. Int Eye Sci, 2020, 20(4): 707-710. DOI: 10.3980/j.issn.1672-5123.2020.4.29.
|
3. |
Zhang J, Wang Y, Li L, et al. Diabetic retinopathy may predict the renal outcomes of patients with diabetic nephropathy[J]. Ren Fail, 2018, 40(1): 243-251. DOI: 10.1080/0886022X.2018.1456453.
|
4. |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI: 10.1038/s41580-020-00324-8.
|
5. |
He W, Chang L, Li X, et al. Research progress on the mechanism of ferroptosis and its role in diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1155296[2023-06-01]. https://pubmed.ncbi.nlm.nih.gov/37334304/. DOI: 10.3389/fendo.2023.1155296.
|
6. |
Recalcati S, Gammella E, Cairo G. Dysregulation of iron metabolism in cancer stem cells[J]. Free Radic Biol Med, 2019, 133: 216-220. DOI: 10.1016/j.freeradbiomed.2018.07.015.
|
7. |
Bruinink A, Sidler C, Birchler F. Neurotrophic effects of transferrin on embryonic chick brain and neural retinal cell cultures[J]. Int J Dev Neurosci, 1996, 14(6): 785-795. DOI: 10.1016/s0736-5748(96)00035-4.
|
8. |
Shahandeh A, Bui BV, Finkelstein DI, et al. Therapeutic applications of chelating drugs in iron metabolic disorders of the brain and retina[J]. J Neurosci Res, 2020, 98(10): 1889-1904. DOI: 10.1002/jnr.24685.
|
9. |
Picard E, Daruich A, Youale J, et al. From rust to quantum biology: the role of iron in retina physiopathology[J]. Cells, 2020, 9(3): 705. DOI: 10.3390/cells9030705.
|
10. |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
|
11. |
Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J/OL]. JCI Insight, 2020, 5(9): e132747[2020-05-07]. https://pubmed.ncbi.nlm.nih.gov/32376803/. DOI: 10.3390/ijms20133283.
|
12. |
Wang H, Liu C, Zhao Y, et al. Mitochondria regulation in ferroptosis[J/OL]. Eur J Cell Biol, 2020, 99(1): 151058[2019-11-15]. https://pubmed.ncbi.nlm.nih.gov/31810634/. DOI: 10.1016/j.ejcb.2019.151058.
|
13. |
Yan N, Zhang J. Iron metabolism, ferroptosis, and the links with Alzheimer's disease[J/OL]. Front Neurosci, 2020, 13: 1443[2020-01-29]. https://pubmed.ncbi.nlm.nih.gov/32063824/. DOI: 10.3389/fnins.2019.01443.
|
14. |
Aron AT, Loehr MO, Bogena J, et al. An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells[J]. J Am Chem Soc, 2016, 138(43): 14338-14346. DOI: 10.1021/jacs.6b08016.
|
15. |
Xia X, Fan X, Zhao M, et al. The relationship between ferroptosis and tumors: a novel landscape for therapeutic approach[J]. Curr Gene Ther, 2019, 19(2): 117-124. DOI: 10.2174/156652321 9666190628152137.
|
16. |
Aschner M, Skalny AV, Martins AC, et al. Ferroptosis as a mechanism of non-ferrous metal toxicity[J]. Arch Toxicol, 2022, 96(9): 2391-2417. DOI: 10.1007/s00204-022-03317-y.
|
17. |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021.
|
18. |
Dhaval P, Witt SN. Ethanolamine and phosphatidylethanolamine: partners in health and disease[J/OL]. Oxid Med Cell Longev, 2017, 2017: 4829180[2017-07-12]. https://pubmed.ncbi.nlm.nih.gov/28785375/. DOI: 10.1155/2017/4829180.
|
19. |
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331. DOI: 10.1016/j.cell.2013.12.010.
|
20. |
Wang Y, Yang L, Zhang X, et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53[J/OL]. EMBO Rep, 2019, 20(7): e47563[2019-05-22]. https://pubmed.ncbi.nlm.nih.gov/31267712/. DOI: 10.15252/embr.201847563.
|
21. |
Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy[J]. Vision Res, 2017, 139: 7-14. DOI: 10.1016/j.visres.2017.04.003.
|
22. |
田渼雯, 秦波, 刘身文. 铁死亡在眼科疾病中的应用研究进展[J]. 眼科新进展, 2021, 41(2): 182-188. DOI: 10.13389/j.cnki.rao.2021.0039.Tian MW, Qin B, Liu SW. Application of ferroptosis in ophthalmic diseases[J]. Curr Adv Ophthalmol, 2021, 41(2): 182-188. DOI: 10.13389/j.cnki.rao.2021.0039.
|
23. |
Tang X, Li X, Zhang D, et al. Astragaloside-Ⅳ alleviates high glucose-induced ferroptosis in retinal pigment epithelial cells by disrupting the expression of miR-138-5p/Sirt1/Nrf2[J]. Bioengineered, 2022, 13(4): 8240-8254. DOI: 10.1080/21655979.2022.2049471.
|
24. |
Itoh K, Furuhashi M, Ida Y, et al. Detection of significantly high vitreous concentrations of fatty acid-binding protein 4 in patients with proliferative diabetic retinopathy[J/OL]. Sci Rep, 2021, 11(1): 12382[2021-06-11]. https://pubmed.ncbi.nlm.nih.gov/34117325/. DOI: 10.1038/s41598-021-91857-1.
|
25. |
Fan X, Xu M, Ren Q, et al. Downregulation of fatty acid binding protein 4 alleviates lipid peroxidation and oxidative stress in diabetic retinopathy by regulating peroxisome proliferator-activated receptor γ-mediated ferroptosis[J]. Bioengineered, 2022, 13(4): 10540-10551. DOI: 10.1080/21655979.2022.2062533.
|
26. |
Liu C, Sun W, Zhu T, et al. Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy[J/OL]. Redox Biol, 2022, 52: 102292[2022-03-18]. https://pubmed.ncbi.nlm.nih.gov/35325805/. DOI: 10.1016/j.redox.2022.102292.
|
27. |
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3.
|
28. |
Zhang J, Qiu Q, Wang H, et al. TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination[J/OL]. Exp Cell Res, 2021, 407(2): 112800[2021-10-15]. https://pubmed.ncbi.nlm.nih.gov/34487731/. DOI: 10.1016/j.yexcr.2021.112800.
|
29. |
Kim D, Lee D, Trackman PC, et al. Effects of high glucose-induced lysyl oxidase propeptide on retinal endothelial cell survival[J]. Am J Pathol, 2019, 189(10): 1945-1952. DOI: 10.1016/j.ajpath.2019.06.004.
|
30. |
Chaudhary S, Zaveri J, Becker N. Proliferative diabetic retinopathy (PDR)[J/OL]. Dis Mon, 2021, 67(5): 101140[2021-02-03]. https://pubmed.ncbi.nlm.nih.gov/33546872/. DOI: 10.1016/j.disamonth.2021.101140.
|
31. |
Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J]. Cancer Commun (Lond), 2018, 38(1): 12. DOI: 10.1186/s40880-018-0288-x.
|
32. |
Arjunan P, Gnanaprakasam JP, Ananth S, et al. Increased retinal expression of the pro-angiogenic receptor GPR91 via BMP6 in a mouse model of juvenile hemochromatosis[J]. Invest Ophthalmol Vis Sci, 2016, 57(4): 1612-1619. DOI: 10.1167/iovs.15-17437.
|
33. |
Ola MS, Alhomida AS, LaNoue KF. Gabapentin attenuates oxidative stress and apoptosis in the diabetic rat retina[J]. Neurotox Res, 2019, 36(1): 81-90. DOI: 10.1007/s12640-019-00018-w.
|
34. |
Park SH, Park JW, Park SJ, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina[J]. Diabetol, 2003, 46(9): 1260-1268. DOI: 10.1007/s00125-003-1177-6.
|
35. |
Khan RS, Baumann B, Dine K, et al. Dexras1 deletion and iron chelation promote neuroprotection in experimental optic neuritis[J/OL]. Sci Rep, 2019, 9(1): 11664[2019-08-12]. https://pubmed.ncbi.nlm.nih.gov/31406150/. DOI: 10.1038/s41598-019-48087-3.
|
36. |
Ning A, Cui J, To E, et al. Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease[J]. Invest Ophthalmol Vis Sci, 2008, 49(11): 5136-5143. DOI: 10.1167/iovs.08-1849.
|
37. |
Oskarsson ME, Paulsson JF, Schultz SW, et al. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease[J]. Am J Pathol, 2015, 185(3): 834-846. DOI: 10.1016/j.ajpath.2014.11.016.
|
38. |
Zhang YH, Wang DW, Xu SF, et al. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice[J]. Redox Biol, 2018, 14: 535-548. DOI: 10.1016/j.redox.2017.11.001.
|
39. |
Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J/OL]. Signal Transduct Target Ther, 2021, 6(1): 49[2021-02-03]. https://pubmed.ncbi.nlm.nih.gov/33536413/. DOI: 10.1038/s41392-020-00428-9.
|
40. |
Xu S, Min J, Wang F. Ferroptosis: an emerging player in immune cells[J]. Sci Bull, 2021, 66(22): 2257-2260. DOI: 10.1016/j.scib.2021.02.026.
|
41. |
Seiler A, Schneider M, Förster H, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death[J]. Cell Metab, 2008, 8(3): 237-248. DOI: 10.1016/j.cmet.2008.07.005.
|
42. |
Matsushita M, Freigang S, Schneider C, et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection[J]. J Exp Med, 2015, 212(4): 555-568. DOI: 10.1084/jem.20140857.
|
43. |
Wen Q, Liu J, Kang R, et al. The release and activity of HMGB1 in ferroptosis[J]. Biochem Biophys Res Commun, 2019, 510(2): 278-283. DOI: 10.1016/j.bbrc.2019.01.090.
|
44. |
Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19(4): 942. DOI: 10.3390/ijms19040942.
|
45. |
Steinle JJ. Role of HMGB1 signaling in the inflammatory process in diabetic retinopathy[J/OL]. Cell Signal, 2020, 73(11): 109687[2020-06-01]. https://pubmed.ncbi.nlm.nih.gov/32497617/. DOI: 10.1016/j.cellsig.2020.109687.
|