- Department of Ophthalmology, Tongji Hospital Affiliated to Tongji Medical College of HUST, Wuhan 430000, China;
The pathogenesis of Vogt-Koyanagi Harada disease (VKH) has not yet been fully defined. Current studies mainly suggest that VKH is actually an autoimmune disease, especially related to the immune response mediated by various signal transduction pathways involved in the function of T cells. In recent years, the influence of the balance imbalance of various T cell subsets in cellular immunity on the pathogenesis of VKH has been a hot research direction. Currently, T helper cell 17/T regulatory cells, balance is the focus of clinical research, meanwhile, new discoveries and potential clinical treatment schemes have been made for related cellular pathways, particularly the Janus kinase/signal transducers and activators of transcription pathway and NF-kappa B pathway. The exploration of B cells in the pathogenesis of VKH has also achieved initial results through the successful application of various targeted drugs. In the future, further screening and localization of genes or proteins that are abnormally regulated or expressed in VKH, for which early comprehensive and in-depth exploration will be helpful, thus improve the efficacy of clinical treatment programs and develop new therapeutic targets.
Citation: Zhang Zhibing, Chen Bo. Research progress of autoimmune reaction mechanism in Vogt-Koyanagi-Harada syndrome. Chinese Journal of Ocular Fundus Diseases, 2024, 40(6): 485-490. doi: 10.3760/cma.j.cn511434-20231114-00456 Copy
1. | 黄果, 杨培增. Vogt-小柳原田综合征的治疗进展[J]. 国际眼科杂志, 2017, 17(6): 1082-1086. DOI: 10.3980/j.issn.1672-5123.2017.6.18.Huang G, Yang PZ. Advances in treatment of Vogt-Koyanagi-Harada syndrome[J]. Int Rev Ophthalmol, 2017, 17(6): 1082-1086. DOI: 10.3980/j.issn.1672-5123.2017.6.18. |
2. | Zhu J. T helper cell differentiation, heterogeneity, and plasticity[J/OL]. Cold Spring Harb Perspect Biol, 2018, 10(10): a030338[2018-10-01]. https://pubmed.ncbi.nlm.nih.gov/28847903/. DOI: 10.1101/cshperspect.a030338. |
3. | Sakaguchi M, Sugita S, Sagawa K, et al. Cytokine production by T cells infiltrating in the eye of uveitis patients[J]. Jpn J Ophthalmol, 1998, 42(4): 262-268. DOI: 10.1016/S0021-5155(98)00016-1. |
4. | Patil YB, Garg R, Rajguru JP, et al. Vogt-Koyanagi-Harada (VKH) syndrome: a new perspective for healthcare professionals[J]. J Family Med Prim Care, 2020, 9(1): 31-35. DOI: 10.4103/jfmpc.jfmpc_787_19. |
5. | Liang L, Peng XY, Wang H. Th lymphocyte subsets in patients with Vogt-Koyanagi-Harada disease[J]. Int J Ophthalmol, 2019, 12(2): 207-211. DOI: 10.18240/ijo.2019.02.04. |
6. | Zhang W, Chen Z, Yi K, et al. TET2-mediated upregulation of 5-hydroxymethylcytosine in LRRC39 promoter promotes Th1 response in association with downregulated Treg response in Vogt-Koyanagi-Harada disease[J/OL]. Clin Immunol, 2023, 250: 109323[2023-04-03]. https://pubmed.ncbi.nlm.nih.gov/37019422/. DOI: 10.1016/j.clim.2023.109323. |
7. | Deng B, Ye Z, Li L, et al. Higher expression of NOD1 and NOD2 is associated with Vogt-Koyanagi-Harada (VKH) syndrome but not Behcet's disease (BD)[J]. Curr Mol Med, 2016, 16(4): 424-435. DOI: 10.2174/1566524016666160316153038. |
8. | Wu L, Wen H, Zhou Y, et al. Activation of the liver X receptor inhibits Th17 and Th1 responses in Behcet's disease and Vogt-Koyanagi-Harada disease[J]. Curr Mol Med, 2014, 14(6): 712-722. DOI: 10.2174/1566524014666140724100135. |
9. | De la Cruz-Mosso U, García-Iglesias T, Bucala R, et al. MIF promotes a differential Th1/Th2/Th17 inflammatory response in human primary cell cultures: predominance of Th17 cytokine profile in PBMC from healthy subjects and increase of IL-6 and TNF-α in PBMC from active SLE patients[J]. Cell Immunol, 2018, 324: 42-49. DOI: 10.1016/j.cellimm.2017.12.010. |
10. | Yi S, Chang R, Hu J, et al. Disabled-2 (DAB2) overexpression inhibits monocyte-derived dendritic cells' function in Vogt-Koyanagi-Harada disease[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4662-4669. DOI: 10.1167/iovs.18-24630. |
11. | Qiu Y, Yu H, Zhu Y, et al. Hypermethylation of interferon regulatory factor 8 (IRF8) confers risk to Vogt-Koyanagi-Harada disease[J/OL]. Sci Rep, 2017, 7(1): 1007[2017-04-21]. https://pubmed.ncbi.nlm.nih.gov/28432342/. DOI: 10.1038/s41598-017-01249-7. |
12. | Hu J, Yi S, Wang C, et al. A20 inhibits intraocular inflammation in mice by regulating the function of CD4+T cells and RPE cells[J/OL]. Front Immunol, 2021, 11: 603939[2021-02-04]. https://pubmed.ncbi.nlm.nih.gov/33613524/. DOI: 10.3389/fimmu.2020.603939. |
13. | Shu J, Su G, Zhang J, et al. Analyses of circRNA and mRNA profiles in Vogt-Koyanagi-Harada disease[J/OL]. Front Immunol, 2021, 12: 738760[2021-12-22]. https://pubmed.ncbi.nlm.nih.gov/35003060/. DOI: 10.3389/fimmu.2021.738760. |
14. | Saravia J, Chapman NM, Chi H. Helper T cell differentiation[J]. Cell Mol Immunol, 2019, 16(7): 634-643. DOI: 10.1038/s41423-019-0220-6. |
15. | Lee GR. The balance of Th17 versus Treg cells in autoimmunity[J/OL]. Int J Mol Sci, 2018, 19(3): 730[2018-03-03]. https://pubmed.ncbi.nlm.nih.gov/29510522/. DOI: 10.3390/ijms19030730. |
16. | Chen Y, Liu J, Zhang X, et al. lncRNA-GM targets Foxo1 to promote T cell-mediated autoimmunity[J/OL]. Sci Adv, 2022, 8(31): eabn9181[2022-08-05]. https://pubmed.ncbi.nlm.nih.gov/35930633/. DOI: 10.1126/sciadv.abn9181. |
17. | Khan H, Sureda A, Belwal T, et al. Polyphenols in the treatment of autoimmune diseases[J]. Autoimmun Rev, 2019, 18(7): 647-657. DOI: 10.1016/j.autrev.2019.05.001. |
18. | Villegas SN, Gombos R, García-López L, et al. PI3K/Akt cooperates with oncogenic notch by inducing nitric oxide-dependent inflammation[J]. Cell Rep, 2018, 22(10): 2541-2549. DOI: 10.1016/j.celrep.2018.02.049. |
19. | Kraus EE, Kakuk-Atkins L, Farinas MF, et al. Regulation of autoreactive CD4 T cells by FoxO1 signaling in CNS autoimmunity[J/OL]. J Neuroimmunol, 2021, 359: 577675[2021-10-15]. https://pubmed.ncbi.nlm.nih.gov/34403862/. DOI: 10.1016/j.jneuroim.2021.577675. |
20. | Li H, Xie L, Zhu L, et al. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis[J]. Nat Commun, 2022, 13(1): 5866. DOI: 10.1038/s41467-022-33502-7. |
21. | Ebeid DE, Firouzi F, Esquer CY, et al. PIM1 promotes survival of cardiomyocytes by upregulating c-Kit protein expression[J/OL]. Cells, 2020, 9(9): 2001[2020-08-31]. https://pubmed.ncbi.nlm.nih.gov/32878131/. DOI: 10.3390/cells9092001. |
22. | Hedrick SM, Hess Michelini R, Doedens AL, et al. FOXO transcription factors throughout T cell biology[J]. Nat Rev Immunol, 2012, 12(9): 649-661. DOI: 10.1038/nri3278. |
23. | Chen Y, Li Z, Li H, et al. Apremilast regulates the Teff/Treg balance to ameliorate uveitis via PI3K/AKT/FoxO1 signaling pathway[J/OL]. Front Immunol, 2020, 11: 581673[2020-11-17]. https://pubmed.ncbi.nlm.nih.gov/33281814/. DOI: 10.3389/fimmu.2020.581673. |
24. | Banerjee S, Biehl A, Gadina M, et al. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects[J]. Drugs, 2017, 77(5): 521-546. DOI: 10.1007/s40265-017-0701-9. |
25. | Gorman JA, Hundhausen C, Kinsman M, et al. The TYK2-P1104A autoimmune protective variant limits coordinate signals required to generate specialized T Cell subsets[J/OL]. Front Immunol, 2019, 10: 44[2019-01-25]. https://pubmed.ncbi.nlm.nih.gov/30740104/. DOI: 10.3389/fimmu.2019.00044. |
26. | Traves PG, Murray B, Campigotto F, et al. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by Filgotinib, Upadacitinib, Tofacitinib and Baricitinib[J]. Ann Rheum Dis, 2021, 80(7): 865-875. DOI: 10.1136/annrheumdis-2020-219012. |
27. | Liu X, Jiang Q, Lv J, et al. Insights gained from single-cell analysis of immune cells in tofacitinib treatment of Vogt-Koyanagi-Harada disease[J/OL]. JCI Insight, 2022, 7(23): e162335[2022-12-08]. https://pubmed.ncbi.nlm.nih.gov/36301664/. DOI: 10.1172/jci.insight.162335. |
28. | Seif F, Khoshmirsafa M, Aazami H, et al. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells[J]. Cell Commun Signal, 2017, 15(1): 23. DOI: 10.1186/s12964-017-0177-y. |
29. | Freeman AF, Holland SM. The hyper-IgE syndromes[J]. Immunol Allergy Clin North Am, 2008, 28(2): 277-278. DOI: 10.1016/j.iac.2008.01.005. |
30. | Flanagan SE, Haapaniemi E, Russell MA, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease[J]. Nat Genet, 2014, 46(8): 812-814. DOI: 10.1038/ng.3040. |
31. | Sobah ML, Liongue C, Ward AC. SOCS proteins in immunity, inflammatory diseases, and immune-related cancer[J/OL]. Front Med (Lausanne), 2021, 8: 727987[2021-09-16]. https://pubmed.ncbi.nlm.nih.gov/34604264/. DOI: 10.3389/fmed.2021.727987. |
32. | Yao R, Ma YL, Liang W, et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1[J/OL]. PLoS One, 2012, 7(10): e46082[2012-10-16]. https://pubmed.ncbi.nlm.nih.gov/23091595/. DOI: 10.1371/journal.pone.0046082. |
33. | Silva LEF, Lourenço JD, Silva KR, et al. Th17/Treg imbalance in COPD development: suppressors of cytokine signaling and signal transducers and activators of transcription proteins[J/OL]. Sci Rep, 2020, 10(1): 15287[2020-09-17]. https://pubmed.ncbi.nlm.nih.gov/32943702/. DOI: 10.1038/s41598-020-72305-y. |
34. | Damasceno LEA, Prado DS, Veras FP, et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation[J/OL]. J Exp Med, 2020, 217(10): e20190613[2020-10-05]. https://pubmed.ncbi.nlm.nih.gov/32697823/. DOI: 10.1084/jem.20190613. |
35. | Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy[J]. Immunol Lett, 2020, 17: 91-115. DOI: 10.1016/j.imlet.2019.11.007. |
36. | Bianchi ME, Mezzapelle R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration[J/OL]. Front Immunol, 2020, 11: 2109[2020-08-28]. https://pubmed.ncbi.nlm.nih.gov/32983169/. DOI: 10.3389/fimmu.2020.02109. |
37. | Galli E, Hartmann FJ, Schreiner B, et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis[J]. Nat Med, 2019, 25(8): 1290-1300. DOI: 10.1038/s41591-019-0521-4. |
38. | Huang Z, Jiang Q, Chen J, et al. Therapeutic effects of Upadacitinib on experimental autoimmune uveitis: insights from single-cell analysis[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(12): 28[2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/37713206/. DOI: 10.1167/iovs.64.12.28. |
39. | Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558. DOI: 10.1038/nri.2017.52. |
40. | Li Y, Wang H, Zhou X, et al. Cell intrinsic role of NF-κB-inducing kinase in regulating T cell-mediated immune and autoimmune responses[J/OL]. Sci Rep, 2016, 6: 22115[2016-02-25]. https://pubmed.ncbi.nlm.nih.gov/26912039/. DOI: 10.1038/srep22115. |
41. | Barnabei L, Laplantine E, Mbongo W, et al. NF-κB: at the borders of autoimmunity and inflammation[J/OL]. Front Immunol, 2021, 12: 716469[2021-08-09]. https://pubmed.ncbi.nlm.nih.gov/34434197/. DOI: 10.3389/fimmu.2021.716469. |
42. | Capece D, Verzella D, Flati I, et al. NF-κB: blending metabolism, immunity, and inflammation[J]. Trends Immunol, 2022, 43(9): 757-775. DOI: 10.1016/j.it.2022.07.004. |
43. | Pflug KM, Sitcheran R. Targeting NF-κB-inducing kinase (NIK) in immunity, inflammation, and cancer[J]. Int J Mol Sci, 2020, 21(22): 8470[2020-11-11]. https://pubmed.ncbi.nlm.nih.gov/33187137/. DOI: 10.3390/ijms21228470. |
44. | Jiang Y, Wang H, Yu H, et al. Two genetic variations in the IRF8 region are associated with Behçet's disease in Han Chinese[J/OL]. Sci Rep, 2016, 6: 19651[2016-01-22]. https://pubmed.ncbi.nlm.nih.gov/26794091/. DOI: 10.1038/srep19651. |
45. | Wang C, Zhou W, Su G, et al. Progranulin suppressed autoimmune uveitis and autoimmune neuroinflammation by inhibiting Th1/Th17 cells and promoting Treg cells and M2 macrophages[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(2): e1133[2022-01-26]. https://pubmed.ncbi.nlm.nih.gov/35082168/. DOI: 10.1212/NXI.0000000000001133. |
46. | Zhu L, Li H, Wang R, et al. Identification of Hif1α as a potential participant in autoimmune uveitis pathogenesis using single-cell transcriptome analysis[J]. Invest Ophthalmol Vis Sci, 2023, 64(5): 24[2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/37227746/. DOI: 10.1167/iovs.64.5.24. |
47. | Franks SE, Getahun A, Hogarth PM, et al. Targeting B cells in treatment of autoimmunity[J]. Curr Opin Immunol, 2016, 43: 39-45. DOI: 10.1016/j.coi.2016.09.003. |
48. | Hofmann K, Clauder AK, Manz RA. Targeting B cells and plasma cells in autoimmune diseases[J/OL]. Front Immunol, 2018, 9: 8 35[2018-04-23]. https://pubmed.ncbi.nlm.nih.gov/29740441/. DOI: 10.3389/fimmu.2018.00835. |
49. | Musette P, Bouaziz JD. B cell Modulation strategies in autoimmune diseases: new concepts[J/OL]. Front Immunol, 2018, 9: 622[2018-04-13]. https://pubmed.ncbi.nlm.nih.gov/29706952/. DOI: 10.3389/fimmu.2018.00622. |
50. | Raza IGA, Clarke AJ. B cell metabolism and autophagy in autoimmunity[J/OL]. Front Immunol, 2021, 12: 681105[2021-06-07]. https://pubmed.ncbi.nlm.nih.gov/34163480/. DOI: 10.3389/fimmu.2021.681105. |
51. | Rawlings DJ, Metzler G, Wray-Dutra M, et al. Altered B cell signalling in autoimmunity[J]. Nat Rev Immunol, 2017, 17(7): 421-436. DOI: 10.1038/nri.2017.24. |
52. | Abu El-Asrar AM, Van Damme J, Struyf S, et al. New perspectives on the immunopathogenesis and treatment of uveitis associated with Vogt-Koyanagi-Harada disease[J/OL]. Front Med (Lausanne), 2021, 8: 705796[2021-11-12]. https://pubmed.ncbi.nlm.nih.gov34869409/.DOI: 10.3389/fmed.2021.705796. |
53. | Lahiri A, Pochard P, Le Pottier L, et al. The complexity of the BAFF TNF-family members: implications for autoimmunity[J]. J Autoimmun, 2012, 39(3): 189-198. DOI: 10.1016/j.jaut.2012.05.009. |
54. | Abu El-Asrar AM, Berghmans N, Al-Obeidan SA, et al. Local cytokine expression profiling in patients with specific autoimmune uveitic entities[J]. Ocul Immunol Inflamm, 2020, 28(3): 453-462. DOI: 10.1080/09273948.2019.1604974. |
55. | Couto C, Schlaen A, Frick M, et al. Adalimumab treatment in patients with Vogt-Koyanagi-Harada disease[J]. Ocul Immunol Inflamm, 2018, 26(3): 485-489. DOI: 10.1080/09273948.2016.1236969. |
56. | Abu El-Asrar AM, Dheyab A, Khatib D, et al. Efficacy of B cell depletion therapy with Rituximab in refractory chronic recurrent uveitis associated with Vogt-Koyanagi-Harada disease[J]. Ocul Immunol Inflamm, 2022, 30(3): 750-757. DOI: 10.1080/09273948.2020.1820531. |
57. | Moura RA, Fonseca JE. JAK Inhibitors and modulation of B cell immune responses in rheumatoid arthritis[J/OL]. Front Med (Lausanne), 2021, 7: 607725[2021-02-05]. https://pubmed.ncbi.nlm.nih.gov/33614673/. DOI: 10.3389/fmed.2020.607725. |
58. | Rizzi M, Lorenzetti R, Fischer K, et al. Impact of Tofacitinib treatment on human B-cells in vitro and in vivo[J]. J Autoimmun, 2017, 77: 55-66. DOI: 10.1016/j.jaut.2016.10.005. |
- 1. 黄果, 杨培增. Vogt-小柳原田综合征的治疗进展[J]. 国际眼科杂志, 2017, 17(6): 1082-1086. DOI: 10.3980/j.issn.1672-5123.2017.6.18.Huang G, Yang PZ. Advances in treatment of Vogt-Koyanagi-Harada syndrome[J]. Int Rev Ophthalmol, 2017, 17(6): 1082-1086. DOI: 10.3980/j.issn.1672-5123.2017.6.18.
- 2. Zhu J. T helper cell differentiation, heterogeneity, and plasticity[J/OL]. Cold Spring Harb Perspect Biol, 2018, 10(10): a030338[2018-10-01]. https://pubmed.ncbi.nlm.nih.gov/28847903/. DOI: 10.1101/cshperspect.a030338.
- 3. Sakaguchi M, Sugita S, Sagawa K, et al. Cytokine production by T cells infiltrating in the eye of uveitis patients[J]. Jpn J Ophthalmol, 1998, 42(4): 262-268. DOI: 10.1016/S0021-5155(98)00016-1.
- 4. Patil YB, Garg R, Rajguru JP, et al. Vogt-Koyanagi-Harada (VKH) syndrome: a new perspective for healthcare professionals[J]. J Family Med Prim Care, 2020, 9(1): 31-35. DOI: 10.4103/jfmpc.jfmpc_787_19.
- 5. Liang L, Peng XY, Wang H. Th lymphocyte subsets in patients with Vogt-Koyanagi-Harada disease[J]. Int J Ophthalmol, 2019, 12(2): 207-211. DOI: 10.18240/ijo.2019.02.04.
- 6. Zhang W, Chen Z, Yi K, et al. TET2-mediated upregulation of 5-hydroxymethylcytosine in LRRC39 promoter promotes Th1 response in association with downregulated Treg response in Vogt-Koyanagi-Harada disease[J/OL]. Clin Immunol, 2023, 250: 109323[2023-04-03]. https://pubmed.ncbi.nlm.nih.gov/37019422/. DOI: 10.1016/j.clim.2023.109323.
- 7. Deng B, Ye Z, Li L, et al. Higher expression of NOD1 and NOD2 is associated with Vogt-Koyanagi-Harada (VKH) syndrome but not Behcet's disease (BD)[J]. Curr Mol Med, 2016, 16(4): 424-435. DOI: 10.2174/1566524016666160316153038.
- 8. Wu L, Wen H, Zhou Y, et al. Activation of the liver X receptor inhibits Th17 and Th1 responses in Behcet's disease and Vogt-Koyanagi-Harada disease[J]. Curr Mol Med, 2014, 14(6): 712-722. DOI: 10.2174/1566524014666140724100135.
- 9. De la Cruz-Mosso U, García-Iglesias T, Bucala R, et al. MIF promotes a differential Th1/Th2/Th17 inflammatory response in human primary cell cultures: predominance of Th17 cytokine profile in PBMC from healthy subjects and increase of IL-6 and TNF-α in PBMC from active SLE patients[J]. Cell Immunol, 2018, 324: 42-49. DOI: 10.1016/j.cellimm.2017.12.010.
- 10. Yi S, Chang R, Hu J, et al. Disabled-2 (DAB2) overexpression inhibits monocyte-derived dendritic cells' function in Vogt-Koyanagi-Harada disease[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4662-4669. DOI: 10.1167/iovs.18-24630.
- 11. Qiu Y, Yu H, Zhu Y, et al. Hypermethylation of interferon regulatory factor 8 (IRF8) confers risk to Vogt-Koyanagi-Harada disease[J/OL]. Sci Rep, 2017, 7(1): 1007[2017-04-21]. https://pubmed.ncbi.nlm.nih.gov/28432342/. DOI: 10.1038/s41598-017-01249-7.
- 12. Hu J, Yi S, Wang C, et al. A20 inhibits intraocular inflammation in mice by regulating the function of CD4+T cells and RPE cells[J/OL]. Front Immunol, 2021, 11: 603939[2021-02-04]. https://pubmed.ncbi.nlm.nih.gov/33613524/. DOI: 10.3389/fimmu.2020.603939.
- 13. Shu J, Su G, Zhang J, et al. Analyses of circRNA and mRNA profiles in Vogt-Koyanagi-Harada disease[J/OL]. Front Immunol, 2021, 12: 738760[2021-12-22]. https://pubmed.ncbi.nlm.nih.gov/35003060/. DOI: 10.3389/fimmu.2021.738760.
- 14. Saravia J, Chapman NM, Chi H. Helper T cell differentiation[J]. Cell Mol Immunol, 2019, 16(7): 634-643. DOI: 10.1038/s41423-019-0220-6.
- 15. Lee GR. The balance of Th17 versus Treg cells in autoimmunity[J/OL]. Int J Mol Sci, 2018, 19(3): 730[2018-03-03]. https://pubmed.ncbi.nlm.nih.gov/29510522/. DOI: 10.3390/ijms19030730.
- 16. Chen Y, Liu J, Zhang X, et al. lncRNA-GM targets Foxo1 to promote T cell-mediated autoimmunity[J/OL]. Sci Adv, 2022, 8(31): eabn9181[2022-08-05]. https://pubmed.ncbi.nlm.nih.gov/35930633/. DOI: 10.1126/sciadv.abn9181.
- 17. Khan H, Sureda A, Belwal T, et al. Polyphenols in the treatment of autoimmune diseases[J]. Autoimmun Rev, 2019, 18(7): 647-657. DOI: 10.1016/j.autrev.2019.05.001.
- 18. Villegas SN, Gombos R, García-López L, et al. PI3K/Akt cooperates with oncogenic notch by inducing nitric oxide-dependent inflammation[J]. Cell Rep, 2018, 22(10): 2541-2549. DOI: 10.1016/j.celrep.2018.02.049.
- 19. Kraus EE, Kakuk-Atkins L, Farinas MF, et al. Regulation of autoreactive CD4 T cells by FoxO1 signaling in CNS autoimmunity[J/OL]. J Neuroimmunol, 2021, 359: 577675[2021-10-15]. https://pubmed.ncbi.nlm.nih.gov/34403862/. DOI: 10.1016/j.jneuroim.2021.577675.
- 20. Li H, Xie L, Zhu L, et al. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis[J]. Nat Commun, 2022, 13(1): 5866. DOI: 10.1038/s41467-022-33502-7.
- 21. Ebeid DE, Firouzi F, Esquer CY, et al. PIM1 promotes survival of cardiomyocytes by upregulating c-Kit protein expression[J/OL]. Cells, 2020, 9(9): 2001[2020-08-31]. https://pubmed.ncbi.nlm.nih.gov/32878131/. DOI: 10.3390/cells9092001.
- 22. Hedrick SM, Hess Michelini R, Doedens AL, et al. FOXO transcription factors throughout T cell biology[J]. Nat Rev Immunol, 2012, 12(9): 649-661. DOI: 10.1038/nri3278.
- 23. Chen Y, Li Z, Li H, et al. Apremilast regulates the Teff/Treg balance to ameliorate uveitis via PI3K/AKT/FoxO1 signaling pathway[J/OL]. Front Immunol, 2020, 11: 581673[2020-11-17]. https://pubmed.ncbi.nlm.nih.gov/33281814/. DOI: 10.3389/fimmu.2020.581673.
- 24. Banerjee S, Biehl A, Gadina M, et al. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects[J]. Drugs, 2017, 77(5): 521-546. DOI: 10.1007/s40265-017-0701-9.
- 25. Gorman JA, Hundhausen C, Kinsman M, et al. The TYK2-P1104A autoimmune protective variant limits coordinate signals required to generate specialized T Cell subsets[J/OL]. Front Immunol, 2019, 10: 44[2019-01-25]. https://pubmed.ncbi.nlm.nih.gov/30740104/. DOI: 10.3389/fimmu.2019.00044.
- 26. Traves PG, Murray B, Campigotto F, et al. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by Filgotinib, Upadacitinib, Tofacitinib and Baricitinib[J]. Ann Rheum Dis, 2021, 80(7): 865-875. DOI: 10.1136/annrheumdis-2020-219012.
- 27. Liu X, Jiang Q, Lv J, et al. Insights gained from single-cell analysis of immune cells in tofacitinib treatment of Vogt-Koyanagi-Harada disease[J/OL]. JCI Insight, 2022, 7(23): e162335[2022-12-08]. https://pubmed.ncbi.nlm.nih.gov/36301664/. DOI: 10.1172/jci.insight.162335.
- 28. Seif F, Khoshmirsafa M, Aazami H, et al. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells[J]. Cell Commun Signal, 2017, 15(1): 23. DOI: 10.1186/s12964-017-0177-y.
- 29. Freeman AF, Holland SM. The hyper-IgE syndromes[J]. Immunol Allergy Clin North Am, 2008, 28(2): 277-278. DOI: 10.1016/j.iac.2008.01.005.
- 30. Flanagan SE, Haapaniemi E, Russell MA, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease[J]. Nat Genet, 2014, 46(8): 812-814. DOI: 10.1038/ng.3040.
- 31. Sobah ML, Liongue C, Ward AC. SOCS proteins in immunity, inflammatory diseases, and immune-related cancer[J/OL]. Front Med (Lausanne), 2021, 8: 727987[2021-09-16]. https://pubmed.ncbi.nlm.nih.gov/34604264/. DOI: 10.3389/fmed.2021.727987.
- 32. Yao R, Ma YL, Liang W, et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1[J/OL]. PLoS One, 2012, 7(10): e46082[2012-10-16]. https://pubmed.ncbi.nlm.nih.gov/23091595/. DOI: 10.1371/journal.pone.0046082.
- 33. Silva LEF, Lourenço JD, Silva KR, et al. Th17/Treg imbalance in COPD development: suppressors of cytokine signaling and signal transducers and activators of transcription proteins[J/OL]. Sci Rep, 2020, 10(1): 15287[2020-09-17]. https://pubmed.ncbi.nlm.nih.gov/32943702/. DOI: 10.1038/s41598-020-72305-y.
- 34. Damasceno LEA, Prado DS, Veras FP, et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation[J/OL]. J Exp Med, 2020, 217(10): e20190613[2020-10-05]. https://pubmed.ncbi.nlm.nih.gov/32697823/. DOI: 10.1084/jem.20190613.
- 35. Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy[J]. Immunol Lett, 2020, 17: 91-115. DOI: 10.1016/j.imlet.2019.11.007.
- 36. Bianchi ME, Mezzapelle R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration[J/OL]. Front Immunol, 2020, 11: 2109[2020-08-28]. https://pubmed.ncbi.nlm.nih.gov/32983169/. DOI: 10.3389/fimmu.2020.02109.
- 37. Galli E, Hartmann FJ, Schreiner B, et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis[J]. Nat Med, 2019, 25(8): 1290-1300. DOI: 10.1038/s41591-019-0521-4.
- 38. Huang Z, Jiang Q, Chen J, et al. Therapeutic effects of Upadacitinib on experimental autoimmune uveitis: insights from single-cell analysis[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(12): 28[2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/37713206/. DOI: 10.1167/iovs.64.12.28.
- 39. Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558. DOI: 10.1038/nri.2017.52.
- 40. Li Y, Wang H, Zhou X, et al. Cell intrinsic role of NF-κB-inducing kinase in regulating T cell-mediated immune and autoimmune responses[J/OL]. Sci Rep, 2016, 6: 22115[2016-02-25]. https://pubmed.ncbi.nlm.nih.gov/26912039/. DOI: 10.1038/srep22115.
- 41. Barnabei L, Laplantine E, Mbongo W, et al. NF-κB: at the borders of autoimmunity and inflammation[J/OL]. Front Immunol, 2021, 12: 716469[2021-08-09]. https://pubmed.ncbi.nlm.nih.gov/34434197/. DOI: 10.3389/fimmu.2021.716469.
- 42. Capece D, Verzella D, Flati I, et al. NF-κB: blending metabolism, immunity, and inflammation[J]. Trends Immunol, 2022, 43(9): 757-775. DOI: 10.1016/j.it.2022.07.004.
- 43. Pflug KM, Sitcheran R. Targeting NF-κB-inducing kinase (NIK) in immunity, inflammation, and cancer[J]. Int J Mol Sci, 2020, 21(22): 8470[2020-11-11]. https://pubmed.ncbi.nlm.nih.gov/33187137/. DOI: 10.3390/ijms21228470.
- 44. Jiang Y, Wang H, Yu H, et al. Two genetic variations in the IRF8 region are associated with Behçet's disease in Han Chinese[J/OL]. Sci Rep, 2016, 6: 19651[2016-01-22]. https://pubmed.ncbi.nlm.nih.gov/26794091/. DOI: 10.1038/srep19651.
- 45. Wang C, Zhou W, Su G, et al. Progranulin suppressed autoimmune uveitis and autoimmune neuroinflammation by inhibiting Th1/Th17 cells and promoting Treg cells and M2 macrophages[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(2): e1133[2022-01-26]. https://pubmed.ncbi.nlm.nih.gov/35082168/. DOI: 10.1212/NXI.0000000000001133.
- 46. Zhu L, Li H, Wang R, et al. Identification of Hif1α as a potential participant in autoimmune uveitis pathogenesis using single-cell transcriptome analysis[J]. Invest Ophthalmol Vis Sci, 2023, 64(5): 24[2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/37227746/. DOI: 10.1167/iovs.64.5.24.
- 47. Franks SE, Getahun A, Hogarth PM, et al. Targeting B cells in treatment of autoimmunity[J]. Curr Opin Immunol, 2016, 43: 39-45. DOI: 10.1016/j.coi.2016.09.003.
- 48. Hofmann K, Clauder AK, Manz RA. Targeting B cells and plasma cells in autoimmune diseases[J/OL]. Front Immunol, 2018, 9: 8 35[2018-04-23]. https://pubmed.ncbi.nlm.nih.gov/29740441/. DOI: 10.3389/fimmu.2018.00835.
- 49. Musette P, Bouaziz JD. B cell Modulation strategies in autoimmune diseases: new concepts[J/OL]. Front Immunol, 2018, 9: 622[2018-04-13]. https://pubmed.ncbi.nlm.nih.gov/29706952/. DOI: 10.3389/fimmu.2018.00622.
- 50. Raza IGA, Clarke AJ. B cell metabolism and autophagy in autoimmunity[J/OL]. Front Immunol, 2021, 12: 681105[2021-06-07]. https://pubmed.ncbi.nlm.nih.gov/34163480/. DOI: 10.3389/fimmu.2021.681105.
- 51. Rawlings DJ, Metzler G, Wray-Dutra M, et al. Altered B cell signalling in autoimmunity[J]. Nat Rev Immunol, 2017, 17(7): 421-436. DOI: 10.1038/nri.2017.24.
- 52. Abu El-Asrar AM, Van Damme J, Struyf S, et al. New perspectives on the immunopathogenesis and treatment of uveitis associated with Vogt-Koyanagi-Harada disease[J/OL]. Front Med (Lausanne), 2021, 8: 705796[2021-11-12]. https://pubmed.ncbi.nlm.nih.gov34869409/.DOI: 10.3389/fmed.2021.705796.
- 53. Lahiri A, Pochard P, Le Pottier L, et al. The complexity of the BAFF TNF-family members: implications for autoimmunity[J]. J Autoimmun, 2012, 39(3): 189-198. DOI: 10.1016/j.jaut.2012.05.009.
- 54. Abu El-Asrar AM, Berghmans N, Al-Obeidan SA, et al. Local cytokine expression profiling in patients with specific autoimmune uveitic entities[J]. Ocul Immunol Inflamm, 2020, 28(3): 453-462. DOI: 10.1080/09273948.2019.1604974.
- 55. Couto C, Schlaen A, Frick M, et al. Adalimumab treatment in patients with Vogt-Koyanagi-Harada disease[J]. Ocul Immunol Inflamm, 2018, 26(3): 485-489. DOI: 10.1080/09273948.2016.1236969.
- 56. Abu El-Asrar AM, Dheyab A, Khatib D, et al. Efficacy of B cell depletion therapy with Rituximab in refractory chronic recurrent uveitis associated with Vogt-Koyanagi-Harada disease[J]. Ocul Immunol Inflamm, 2022, 30(3): 750-757. DOI: 10.1080/09273948.2020.1820531.
- 57. Moura RA, Fonseca JE. JAK Inhibitors and modulation of B cell immune responses in rheumatoid arthritis[J/OL]. Front Med (Lausanne), 2021, 7: 607725[2021-02-05]. https://pubmed.ncbi.nlm.nih.gov/33614673/. DOI: 10.3389/fmed.2020.607725.
- 58. Rizzi M, Lorenzetti R, Fischer K, et al. Impact of Tofacitinib treatment on human B-cells in vitro and in vivo[J]. J Autoimmun, 2017, 77: 55-66. DOI: 10.1016/j.jaut.2016.10.005.
-
Previous Article
Research progress of circRNA in retinoblastoma -
Next Article
Research progress in diffuse chorioretinal atrophy