1. |
Liu YC, Wilkins M, Kim T, et al. Cataracts[J]. Lancet, 2017, 390(10094): 600-612. DOI: 10.1016/S0140-6736(17)30544-5.
|
2. |
Tariq MA, Uddin QS, Ahmed B, et al. Prevalence of pediatric cataract in Asia: a systematic review and meta-analysis[J]. J Curr Ophthalmol, 2022, 34(2): 148-159. DOI: 10.4103/joco.joco_339_21.
|
3. |
Writing Committee for the Pediatric Eye Disease Investigator Group (PEDIG), Repka MX, Dean TW, et al. Visual acuity and ophthalmic outcomes in the year after cataract surgery among children younger than 13 years[J]. JAMA Ophthalmol, 2019, 137(7): 817-824. DOI: 10.1001/jamaophthalmol.2019.1220.
|
4. |
Hendrickson A, Possin D, Vajzovic L, et al. Histologic development of the human fovea from midgestation to maturity[J]. Am J Ophthalmol, 2012, 154(5): 767-778. DOI: 10.1016/j.ajo.2012.05.007.
|
5. |
Wang CT, Chang YH, Tan GSW, et al. Optical coherence tomography and optical coherence tomography angiography in pediatric retinal diseases[J]. Diagnostics (Basel), 2023, 13(8): 1461. DOI: 10.3390/diagnostics13081461.
|
6. |
Hsu ST, Ngo HT, Stinnett SS, et al. Assessment of macular microvasculature in healthy eyes of infants and children using OCT angiography[J]. Ophthalmology, 2019, 126(12): 1703-1711. DOI: 10.1016/j.ophtha.2019.06.028.
|
7. |
Lee H, Purohit R, Patel A, et al. In vivo foveal development using optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2015, 56(8): 4537-4545. DOI: 10.1167/iovs.15-16542.
|
8. |
Provis JM, Hendrickson AE. The foveal avascular region of developing human retina[J]. Arch Ophthalmol, 2008, 126(4): 507-511. DOI: 10.1001/archopht.126.4.507.
|
9. |
He Y, Chen X, Tsui I, et al. Insights into the developing fovea revealed by imaging[J/OL]. Prog Retin Eye Res, 202, 90: 101067[2022-09-20]. https://pubmed.ncbi.nlm.nih.gov/35595637/. DOI: 10.1016/j.preteyeres.2022.101067.
|
10. |
Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disease[J]. Prog Retin Eye Res, 2018, 63: 1-19. DOI: 10.1016/j.preteyeres.2017.11.001.
|
11. |
Provis JM, Leech J, Diaz CM, et al. Development of the human retinal vasculature: cellular relations and VEGF expression[J]. Exp Eye Res, 1997, 65(4): 555-568. DOI: 10.1006/exer.1997.0365.
|
12. |
Hughes S, Yang H, Chan-Ling T, et al. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis[J]. Invest Ophthalmol Vis Sci, 2000, 41(5): 1217-1228.
|
13. |
Provis JM. Development of the primate retinal vasculature[J]. Prog Retin Eye Res, 2001, 20(6): 799-821. DOI: 10.1016/s1350-9462(01)00012-x.
|
14. |
Kozulin P, Natoli R, O'Brien KM, et al. Differential expression of anti-angiogenic factors and guidance genes in the developing macula[J]. Mol Vis, 2009, 15: 45-59.
|
15. |
Lutty GA, McLeod DS. Development of the hyaloid, choroidal and retinal vasculatures in the fetal human eye[J]. Prog Retin Eye Res, 2018, 62: 58-76. DOI: 10.1016/j.preteyeres.2017.10.001.
|
16. |
康峥, 杨晖. 学龄前儿童脉络膜厚度的研究[J]. 中华眼科杂志, 2019, 55(2): 111-114. DOI: 10.3760/cma.j.issn.0412-4081.2019.02.008.Kang Z, Yang H. Choroidal thickness in preschool children[J]. Chin J Ophthalmol, 2019, 55(2): 111-114. DOI: 10.3760/cma.j.issn.0412-4081.2019.02.008.
|
17. |
Read SA, Alonso-Caneiro D, Vincent SJ, et al. Longitudinal changes in choroidal thickness and eye growth in childhood[J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 3103-3112. DOI: 10.1167/iovs.15-16446.
|
18. |
Early Treatment Diabetic Retinopathy Study Research Group. Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics: ETDRS report number 7[J]. Ophthalmology, 1991, 98(5 Suppl): 741-756. DOI: 10.1016/s0161-6420(13)38009-9.
|
19. |
Kim YW, Kim SJ, Yu YS. Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients[J]. Graefe’s Arch Clin Exp Ophthalmol, 2013, 251(12): 2811-2819. DOI: 10.1007/s00417-013-2494-1.
|
20. |
Wang J, Smith HA, Donaldson DL, et al. Macular structural characteristics in children with congenital and developmental cataracts[J]. J AAPOS, 2014, 18(5): 417-422. DOI: 10.1016/j.jaapos.2014.05.008.
|
21. |
Hansen MM, Bach Holm D, Kessel L. Associations between visual function and ultrastructure of the macula and optic disc after childhood cataract surgery[J]. Acta Ophthalmol, 2022, 100(6): 640-647. DOI: 10.1111/aos.15065.
|
22. |
Al-Haddad C, Mehanna CJ, Ismail K. High-definition optical coherence tomography of the macula in deprivational amblyopia[J]. Ophthalmic Surg Lasers Imaging Retina, 2018, 49(3): 198-204. DOI: 10.3928/23258160-20180221-08.
|
23. |
Daniel MC, Dubis AM, MacPhee B, et al. Optical coherence tomography findings after childhood lensectomy[J]. Invest Ophthalmol Vis Sci, 2019, 60(13): 4388-4396. DOI: 10.1167/iovs.19-26806.
|
24. |
Long E, Chen J, Liu Z, et al. Interocular anatomical and visual functional differences in pediatric patients with unilateral cataracts[J]. BMC Ophthalmol, 2016, 16(1): 192. DOI: 10.1186/s12886-016-0371-5.
|
25. |
Wang D, Tian T, Wang J, et al. Longitudinal changes of the macular structure after lens removal combined with anterior vitrectomy after pediatric cataract surgery[J]. J Cataract Refract Surg, 2020, 46(8): 1108-1113. DOI: 10.1097/j.jcrs.0000000000000226.
|
26. |
Sen P, Shah C, Sachdeva M, et al. Central macular thickness and subfoveal choroidal thickness changes on spectral domain optical coherence tomography after cataract surgery in pediatric population[J]. Indian J Ophthalmol, 2022, 70(12): 4331-4336. DOI: 10.4103/ijo.IJO_1114_22.
|
27. |
Passani A, Sframeli AT, Posarelli C, et al. Macular spectral-domain optical coherence tomography values and correlations in healthy children[J]. Int Ophthalmol, 2019, 39(11): 2449-2457. DOI: 10.1007/s10792-019-01085-w.
|
28. |
Giovannini A, Amato G, Mariotti C. The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT[J]. Acta Ophthalmol Scand Suppl, 2002, 236: 34-36. DOI: 10.1034/j.1600-0420.80.s236.44.x.
|
29. |
Curcio CA, Allen KA. Topography of ganglion cells in human retina[J]. J Comp Neurol, 1990, 300(1): 5-25. DOI: 10.1002/cne.903000103.
|
30. |
袁晓萌, 张稚平, 石艳梅, 等. 视网膜神经纤维层的定量评估在视网膜疾病中的应用[J]. 眼科学报, 2023, 38(3): 253-259. DOI: 10.12419/j.issn.1000-4432.2023.03.09.Yuan XM, Zhang ZP, Shi YM, et al. Application of quantitative assessment of retinal nerve fiber layer in retinal diseases[J]. Eye Science, 2023, 38(3): 253-259. DOI: 10.12419/j.issn.1000-4432.2023.03.09.
|
31. |
Bansal P, Ram J, Sukhija J, et al. Retinal nerve fiber layer and macular thickness measurements in children after cataract surgery compared with age-matched controls[J]. Am J Ophthalmol, 2016, 166: 126-132. DOI: 10.1016/j.ajo.2016.03.041.
|
32. |
周薇薇, 刘春民, 苏满想, 等. 先天性白内障致形觉剥夺性弱视眼视网膜神经纤维层厚度分析[J]. 中国斜视与小儿眼科杂志, 2011, 19(4): 149-152. DOI: 10.3969/j.issn.1005-328X.2011.04.002.Zhou WW, Liu CM, Su MX, et al. Analysis of retinal nerve fiber layer thickness in patients with form-deprivation amblyopia induced by congenital cataract[J]. Chinese Journal of Strabismus & Pediatric Ophthalmology, 2011, 19(4): 149-152. DOI: 10.3969/j.issn.1005-328X.2011.04.002.
|
33. |
赵于渔, 赵云娥. 先天性白内障形觉剥夺性弱视眼视网膜神经纤维层厚度的研究[J]. 国际眼科纵览, 2019, 43(3): 199-203. DOI: 10.3760/cma.j.issn.1673-5803.2019.03.012.Zhao YY, Zhao YE. The research of retinal nerve fiber layer thickness in eyes with form deprivation amblyopia due to congenital cataract[J]. Int Rev Ophthalmol, 2019, 43(3): 199-203. DOI: 10.3760/cma.j.issn.1673-5803.2019.03.012.
|
34. |
Magli A, Esposito Veneruso P, Rinaldi M, et al. Long-term effects of early/late-onset visual deprivation on macular and retinal nerve fibers layer structure: a pilot study[J/OL]. PLoS One, 2023, 18(3): e0283423[2023-03-23]. https://pubmed.ncbi.nlm.nih.gov/36952524/. DOI: 10.1371/journal.pone.0283423.
|
35. |
Szigeti A, Tátrai E, Szamosi A, et al. A morphological study of retinal changes in unilateral amblyopia using optical coherence tomography image segmentation[J/OL]. PLoS One, 2014, 9(2): e88363[2014-02-06]. https://pubmed.ncbi.nlm.nih.gov/24516641/. DOI: 10.1371/journal.pone.0088363.
|
36. |
Zhang W, Hu H, Cheng H, et al. Evaluation of the changes in vessel density and retinal thickness in patients who underwent unilateral congenital cataract extraction by OCTA[J]. Clin Ophthalmol, 2020, 14: 4221-4228. DOI: 10.2147/OPTH.S286372.
|
37. |
Zhang Y, Li Z, Liu S, et al. Macular morphologic and microvascular analysis in pseudophakic children with previous pediatric cataract using optical coherence tomography angiography[J]. Ophthalmic Res, 2022, 65(5): 540-545. DOI: 10.1159/000524397.
|
38. |
刘晶莹, 余兰慧, 古学军. 单侧先天性白内障形觉剥夺性弱视眼、对侧眼与同龄正常眼黄斑区血流密度特征对比分析[J]. 眼科新进展, 2021, 41(10): 974-977. DOI: 10.13389/j.cnki.rao.2021.0205.Liu JY, Yu LH, Gu XJ. Contrastive analysis of macular vascular density of unilateral congenital cata-ract caused form-vision deprivation amblyopia eyes, contralateral eyes and normal control eyes[J]. Rec Adv Ophthalmol, 2021, 41(10): 974-977. DOI: 10.13389/j.cnki.rao.2021.0205.
|
39. |
Kaur S, Singh SR, Sukhija, et al. Comparison of quantitative measurement of foveal avascular zone and macular vessel density in eyes of children with amblyopia and healthy controls: an optical coherence tomography angiography study[J]. J AAPOS, 2018, 22(2): 164-165. DOI: 10.1016/j.jaapos.2017.06.026.
|
40. |
Yanni SE, Wang J, Chan M. Foveal avascular zone and foveal pit formation after preterm birth[J]. Br J Ophthalmol, 2012, 96(7): 961-966. DOI: 10.1136/bjophthalmol-2012-301612.
|
41. |
Prousali E, Dastiridou A, Ziakas N, et al. Choroidal thickness and ocular growth in childhood[J]. Surv Ophthalmol, 2021, 66(2): 261-275. DOI: 10.1016/j.survophthal.2020.06.008.
|
42. |
Zhou Y, Wang J, Jin L, et al. Morphological characteristics of the subfoveal choroid and their association with visual acuity in postoperative patients with unilateral congenital cataracts[J]. Ann Transl Med, 2022, 10(13): 726. DOI: 10.21037/atm-22-1155.
|
43. |
Chow KL, Riesen AH, Newell FW. Degeneration of retinal ganglion cells in infant chimpanzees reared in darkness[J]. J Comp Neurol, 1957, 107(1): 27-42. DOI: 10.1002/cne.901070103.
|
44. |
Mower GD, Christen WG. Effects of early monocular deprivation on the acuity of lateral geniculate neurons in the cat[J]. Brain Res, 1982, 255(3): 475-480. DOI: 10.1016/0165-3806(82)90012-8.
|
45. |
Prokosch-Willing V, Meyer zu Hoerste M, Mertsch S, et al. Postnatal visual deprivation in rats regulates several retinal genes and proteins, including differentiation-associated fibroblast growth factor-2[J]. Dev Neurosci, 2015, 37(1): 14-28. DOI: 10.1159/000367651.
|
46. |
赵秋语, 陈黎, 胡敏. 树鼩形觉剥夺性弱视模型的视网膜形态变化[J]. 眼科新进展, 2023, 43(7): 520-525.Zhao QY, Chen L, Hu M. Retinal morphological changes in tree shrew model with form deprivation amblyopia[J]. Rec Adv Ophthalmol, 2023, 43(7): 520-525.
|
47. |
Akimov NP, Rentería RC. Dark rearing alters the normal development of spatiotemporal response properties but not of contrast detection threshold in mouse retinal ganglion cells[J]. Dev Neurobiol, 2014, 74(7): 692-706. DOI: 10.1002/dneu.22164.
|
48. |
田璐, 郭雅图. 谷氨酸、γ-氨基丁酸及二者受体在形觉剥夺性近视、弱视动物模型中的表达变化及其意义[J]. 国际眼科纵览, 2022, 46(2): 143-149. DOI: 10.3760/cma.j.issn.1673-5803.2022.02.009.Tian L, Guo YT. Expression changes and significance of glutamate, gamma-aminobutyric acid and their receptors in animal models of form-deprived myopia and form-deprived amblyopia[J]. Int Rev Ophthalmol, 2022, 46(2): 143-149. DOI: 10.3760/cma.j.issn.1673-5803.2022.02.009.
|
49. |
Williams K, Balsor JL, Beshara S, et al. Experience-dependent central vision deficits: Neurobiology and visual acuity[J]. Vision Res, 2015, 114: 68-78. DOI: 10.1016/j.visres.2015.01.021.
|
50. |
Nguyen MT, Vemaraju S, Nayak G, et al. An opsin 5-dopamine pathway mediates light-dependent vascular development in the eye[J]. Nat Cell Biol, 2019, 21(4): 420-429. DOI: 10.1038/s41556-019-0301-x.
|
51. |
Lee H, Khan R, O'Keefe M. Aniridia: current pathology and management[J]. Acta Ophthalmol, 2008, 86(7): 708-715. DOI: 10.1111/j.1755-3768.2008.01427.x.
|
52. |
Karikkineth AC, Scheibye-Knudsen M, Fivenson E, et al. Clinical features, model systems and pathways[J]. Ageing Res Rev, 2017, 33: 3-17. DOI: 10.1016/j.arr.2016.08.002.
|
53. |
Öztürk C, Sarıgül Sezenöz A, Yılmaz G, et al. Bilateral asymmetric rhegmatogenous retinal detachment in a patient with Stickler syndrome[J]. Turk J Ophthalmol, 2018, 48(2): 95-98. DOI: 10.4274/tjo.60430.
|