Retinoblastoma (RB) is a common intraocular tumor in children, often leading to blindness or disability, and its pathogenesis involves genetic and epigenetic regulation. Epigenetics regulates gene expression through mechanisms such as DNA methylation and histone modification without altering the DNA sequence, and the imbalance of its homeostasis is considered a crucial factor in the development and progression of RB. Therapeutic strategies targeting these abnormal modifications offer new potential treatment avenues for RB. Although current research has highlighted the importance of epigenetics in RB, the specific mechanisms of action, the relationship with genetic bases, and the development of targeted drugs remain largely unknown. Therefore, further in-depth research into the epigenetic mechanisms of RB is of great significance for elucidating its carcinogenic mechanisms, identifying effective therapeutic targets, and developing new drugs.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Feng Y, Feng X, Lv Y. Worldwide burden of retinoblastoma from 1990 to 2021[J]. Ophthalmic Res, 2024, 67(1): 672-682. DOI: 10.1159/000542193. |
2. | Zhao J, Li S, Shi J, et al. Clinical presentation and group classification of newly diagnosed intraocular retinoblastoma in China[J]. Br J Ophthalmol, 2011, 95(10): 1372-1375. DOI: 10.1136/bjo.2010.191130. |
3. | 柴勇, 毛甜. 视网膜母细胞瘤基因遗传学及基因治疗新进展[J]. 江西医药, 2017, 52(7): 704-707. DOI: 10.3969/j.issn.1006-2238.2017.07.046.Chai Y, Mao T. Recent advances in the genetics and gene therapy of retinoblastoma[J]. Jiangxi Medical Journal, 2017, 52(7): 704-707. DOI: 10.3969/j.issn.1006-2238.2017.07.046. |
4. | 中华医学会眼科学分会眼底病学组, 中华医学会儿科学分会眼科学组, 中华医学会眼科学分会眼整形眼眶病学组. 中国视网膜母细胞瘤诊断和治疗指南(2019年)[J]. 中华眼科杂志, 2019, 55(10): 726-738. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.003.Retinal Disease Group, Ophthalmology Group, Pediatrics Branch, Chinese Medical Association, Ophthalmic Plastic and Orbital Disease Group, Ophthalmology Branch, Ophthalmology Branch, Chinese Medical Association. Chinese guidelines for the diagnosis and treatment of tetinoblastoma (2019)[J]. Chin J Ophthalmol, 2019, 55(10): 726-738. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.003. |
5. | 李晓华, 何世坤. 眼科表观遗传学研究进展[J]. 中华眼科杂志, 2013, 49(6): 568-573. DOI: 10.3760/cma.j.issn.0412-4081.2013.06.02.Li XH, He SK. The advances of epigenetic research in eye[J]. Chinese Journal of Ophthalmology, 2013, 49(6): 568-573. DOI: 10.3760/cma.j.issn.0412-4081.2013.06.02. |
6. | Chai P, Jia R, Li Y, et al. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma[J/OL]. Prog Retin Eye Res, 2022, 89: 101030[2021-12-01]. https://pubmed.ncbi.nlm.nih.gov/34861419/. DOI: 10.1016/j.preteyeres.2021.101030. |
7. | Zhang J, Benavente CA, McEvoy J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses[J]. Nature, 2012, 481(7381): 329-334. DOI: 10.1038/nature10733. |
8. | Yazici H, Wu HC, Tigli H, et al. High levels of global genome methylation in patients with retinoblastoma[J]. Oncol Lett, 2020, 20(1): 715-723. DOI: 10.3892/ol.2020.11613. |
9. | 邢纹嘉, 孙悦丛, 郭滨, 等. 非编码RNA在眼内恶性肿瘤中的研究进展[J]. 国际免疫学杂志, 2024, 47(3): 283-288. DOI: 10.3760/cma.j.issn.1673-4394.2024.03.009.Xin WJ, Sun YC, Guo B, et al. Research progress of non-coding RNA in intraocular malignant tumors[J]. International Journal of Immunology, 2024, 47(3): 283-288. DOI: 10.3760/cma.j.issn.1673-4394.2024.03.009. |
10. | 荣先芳, 卢奕. 表观遗传学在眼科的研究进展[J]. 国际眼科纵览, 2014, 38(2): 80-86. DOI: 10.3760/cma.j.issn.1673-5803.2014.02.002.Rong XF, Lu Y. Epigenetic research progress in ophthalmology[J]. Int Rev Ophthalmol, 2014, 38(2): 80-86. DOI: 10.3760/cma.j.issn.1673-5803.2014.02.002. |
11. | Singh U, Malik MA, Goswami S, et al. Epigenetic regulation of human retinoblastoma[J]. Tumour Biol, 2016, 37(11): 14427-14441. DOI: 10.1007/s13277-016-5308-3. |
12. | Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia[J]. Adv Cancer Res, 1998, 72: 141-196. DOI: 10.1016/s0065-230x(08)60702-2. |
13. | Livide G, Epistolato MC, Amenduni M, et al. Epigenetic and copy number variation analysis in retinoblastoma by MS-MLPA[J]. Pathol Oncol Res, 2012, 18(3): 703-712. DOI: 10.1007/s12253-012-9498-8. |
14. | Li HT, Xu L, Weisenberger DJ, et al. Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy[J/OL]. Nat Commun, 2022, 13(1): 5523[2022-09-21]. https://pubmed.ncbi.nlm.nih.gov/36130950/. DOI: 10.1038/s41467-022-33248-2. |
15. | Liu H, Zhang Y, Zhang YY, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin[J]. Proc Natl Acad Sci USA, 2020, 117(52): 33628-33638. DOI: 10.1073/pnas.2011780117. |
16. | 张红侠, 陈彦舟, 祁健. 组蛋白修饰的研究进展[J]. 中国组织化学与细胞化学杂志, 2022, 31(1): 85-89. DOI: 10.16705/j.cnki.1004-1850.2022.01.014.Zhang HX, Chen YZ, Qi J. Advances in histone modification[J]. Chinese Journal of Histochemistry and Cytochemistry, 2022, 31(1): 85-89. DOI: 10.16705/j.cnki.1004-1850.2022.01.014. |
17. | Zhou L, Tong Y, Ho BM, et al. Etiology including epigenetic defects of retinoblastoma[J/OL]. Asia Pac J Ophthalmol (Phila), 2024, 13(3): 100072[2024-05-22]. https://pubmed.ncbi.nlm.nih.gov/38789041/. DOI: 10.1016/j.apjo.2024.100072. |
18. | Lin Z, Tang L, Chen S, et al. EZH2 expression in retinoblastoma: a potential therapeutic target[J]. Ophthalmic Res, 2023, 66(1): 1014-1019. DOI: 10.1159/000531530. |
19. | Khan M, Walters LL, Li Q, et al. Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma[J]. Lab Invest, 2015, 95(11): 1278-1290. DOI: 10.1038/labinvest.2015.104. |
20. | Jiang Y, Zheng G, Sun X. PRMT5 promotes retinoblastoma development[J]. Hum Cell, 2023, 36(1): 329-341. DOI: 10.1007/s13577-022-00807-0. |
21. | Bennett RL, Licht JD. Targeting epigenetics in cancer[J]. Annu Rev Pharmacol Toxicol, 2018, 58: 187-207. DOI: 10.1146/annurev-pharmtox-010716-105106. |
22. | Chai P, Jia R, Jia R, et al. Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis[J]. Nucleic Acids Res, 2018, 46(12): 6041-6056. DOI: 10.1093/nar/gky366. |
23. | Xu L, Li W, Shi Q, et al. MicroRNA-936 inhibits the malignant phenotype of retinoblastoma by directly targeting HDAC9 and deactivating the PI3K/AKT pathway[J]. Oncol Rep, 2020, 43(2): 635-645. DOI: 10.3892/or.2020.7456. |
24. | Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressors[J]. Dev Biol, 2007, 302(1): 1-12. DOI: 10.1016/j.ydbio.2006.08.028. |
25. | Marzi MJ, Puggioni EM, Dall'Olio V, et al. Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation[J]. J Cell Biol, 2012, 199(1): 77-95. DOI: 10.1083/jcb.201206033. |
26. | Dalgard CL, Gonzalez M, deNiro JE, et al. Differential microRNA-34a expression and tumor suppressor function in retinoblastoma cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(10): 4542-4551. DOI: 10.1167/iovs.09-3520. |
27. | Liu K, Huang J, Xie M, et al. MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell[J]. Autophagy, 2014, 10(3): 442-452. DOI: 10.4161/auto.27418. |
28. | Danda R, Krishnan G, Ganapathy K, et al. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy[J/OL]. PLoS One, 2013, 8(12): e83398[2013-12-31]. https://pubmed.ncbi.nlm.nih.gov/24391761/. DOI: 10.1371/journal.pone.0083398. |
29. | Conkrite K, Sundby M, Mukai S, et al. miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma[J]. Genes Dev, 2011, 25(16): 1734-1745. DOI: 10.1101/gad.17027411. |
30. | Jo DH, Kim JH, Cho CS, et al. STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters[J]. Oncotarget, 2014, 5(22): 11513-11525. DOI: 10.18632/oncotarget.2546. |
31. | Yang G, Fu Y, Zhang L, et al. miR106b regulates retinoblastoma Y79 cells through Runx3[J]. Oncol Rep, 2017, 38(5): 3039-3043. DOI: 10.3892/or.2017.5931. |
32. | Ghahramani Almanghadim H, Ghorbian S, Khademi NS, et al. New insights into the importance of long non-coding rnas in lung cancer: future clinical approaches[J]. DNA Cell Biol, 2021, 40(12): 1476-1494. DOI: 10.1089/dna.2021.0563. |
33. | Yan J, Deng YX, Cai YL, et al. LncRNA MIR17HG promotes the proliferation, migration, and invasion of retinoblastoma cells by up-regulating HIF-1α expression via sponging miR-155-5p[J]. Kaohsiung J Med Sci, 2022, 38(6): 554-564. DOI: 10.1002/kjm2.12523. |
34. | Lyu J, Wang Y, Zheng Q, et al. Reduction of circular RNA expression associated with human retinoblastoma[J]. Exp Eye Res, 2019, 184: 278-285. DOI: 10.1016/j.exer.2019.03.017. |
35. | Li L, Xia X, Yang T, et al. RNA methylation: a potential therapeutic target in autoimmune disease[J]. Int Rev Immunol, 2024, 43(3): 160-177. DOI: 10.1080/08830185.2023.2280544. |
36. | 陈星燕, 李雪, 付强. RNA甲基化在肺癌中的研究进展[J]. 实用肿瘤学杂志, 2024, 38(6): 421-426. DOI: 10.11904/j.issn.1002-3070.2024.06.011.Chen XY, Li X, Fu Q. Research progress of RNA methylation in lung cancer[J]. Practical Oncology Journal, 2024, 38(6): 421-426. DOI: 10.11904/j.issn.1002-3070.2024.06.011. |
37. | Zhang H, Zhang P, Long C, et al. m6A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway[J]. J Cell Mol Med, 2020, 24(21): 12368-12378. DOI: 10.1111/jcmm.15736. |
38. | Xie W, Shao Y, Bo Q, et al. FTO promotes the progression of retinoblastoma through YTHDF2-dependent N6-methyladenosine modification in E2F3[J]. Mol Carcinog, 2024, 63(5): 926-937. DOI: 10.1002/mc.23698. |
39. | Luo Y, He M, Yang J, et al. A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m6A-dependent activation of multiple oncogenes[J]. Sci China Life Sci, 2023, 66(9): 2138-2151. DOI: 10.1007/s11427-022-2288-4. |
40. | 李莉, 樊玉玺, 夏雨婷, 等. 染色质重塑复合物与基因表达调控的研究进展[J]. 实用医院临床杂志, 2022, 19(1): 177-180. DOI: 10.3969/j.issn.1672-6170.2022.01.048.Li L, Fan YX, Xia YT, et al. Advances in chromatin remodeling complexes and gene expression regulation[J]. Practical Journal of Clinical Medicine, 2022, 19(1): 177-180. DOI: 10.3969/j.issn.1672-6170.2022.01.048. |
41. | 陈卉, 王季石. 染色质重塑: 在疾病机制与治疗中的新视角[J]. 疑难病杂志, 2024, 23(8): 1016-1020. DOI: 10.3969/j.issn.1671-6450.2024.08.024.Chen H, Wang JS. Chromatin remodeling: new perspectives in disease mechanisms and therapy[J]. Chin J Diffic and Compl Cas, 2024, 23(8): 1016-1020. DOI: 10.3969/j.issn.1671-6450.2024.08.024. |
42. | 闫梦丽, 吴焕文, 梁智勇. SWI/SNF染色质重塑复合物在乳腺癌中的研究现状[J]. 临床与实验病理学杂志, 2021, 37(1): 65-68. DOI: 10.13315/j.cnki.cjcep.2021.01.016.Yan ML, Wu HW, Liang ZY. Research status of SWI / SNF chromatin remodeling complex in breast cancer[J]. J Clin Exp Pathol, 2021, 37(1): 65-68. DOI: 10.13315/j.cnki.cjcep.2021.01.016. |
43. | Gunawardena RW, Siddiqui H, Solomon DA, et al. Hierarchical requirement of SWI/SNF in retinoblastoma tumor suppressor-mediated repression of Plk1[J]. J Biol Chem, 2004, 279(28): 29278-29285. DOI: 10.1074/jbc.M400395200. |
44. | 林志烽, 陈旭, 李炳毅, 等. DNA甲基转移酶抑制剂抗肿瘤的免疫机制及其在肿瘤免疫治疗中的应用[J]. 细胞与分子免疫学杂志, 2017, 33(12): 1706-1710. DOI: 10.13423/j.cnki.cjcmi.008518.Lin ZF, Chen X, Li BY, et al. The anti-tumor immune mechanism of DNA methyltransferase inhibitors and its application in tumor immunotherapy[J]. Chin J Cell Mol Immunol, 2017, 33(12): 1706-1710. DOI: 10.13423/j.cnki.cjcmi.008518. |
45. | 杜亚楠, 李茹恬, 谢丽. 组蛋白去乙酰化酶抑制剂在乳腺癌中的研究进展[J]. 现代肿瘤医学, 2024, 32(24): 4674-4679. DOI: 10.3969/j.issn.1672-4992.2024.24.014.Du YN, Li RT, Xie L. Research progress of histone deacetylase inhibitors in breast cancer[J]. Modern Oncology, 2024, 32(24): 4674-4679. DOI: 10.3969/j.issn.1672-4992.2024.24.014. |
46. | Hoy SM. Tazemetostat: first approval[J]. Drugs, 2020, 80(5): 513-521. DOI: 10.1007/s40265-020-01288-x. |
47. | 邓玥, 黄洵. 表观遗传抗肿瘤药物的研发进展[J]. 中国肿瘤临床, 2023, 50(6): 278-285. DOI: 10.12354/j.issn.1000-8179.2023.20221256.Deng Y, Huang X, Advances in epigenetic anti-tumor drug development[J]. Chin J Clin Oncol, 2023, 50(6): 278-285. DOI: 10.12354/j.issn.1000-8179.2023.20221256. |
48. | Yu N, Chen P, Wang Q, et al. Histone deacetylase inhibitors differentially regulate c-Myc expression in retinoblastoma cells[J]. Oncol Lett, 2020, 19(1): 460-468. DOI: 10.3892/ol.2019.11111. |
- 1. Feng Y, Feng X, Lv Y. Worldwide burden of retinoblastoma from 1990 to 2021[J]. Ophthalmic Res, 2024, 67(1): 672-682. DOI: 10.1159/000542193.
- 2. Zhao J, Li S, Shi J, et al. Clinical presentation and group classification of newly diagnosed intraocular retinoblastoma in China[J]. Br J Ophthalmol, 2011, 95(10): 1372-1375. DOI: 10.1136/bjo.2010.191130.
- 3. 柴勇, 毛甜. 视网膜母细胞瘤基因遗传学及基因治疗新进展[J]. 江西医药, 2017, 52(7): 704-707. DOI: 10.3969/j.issn.1006-2238.2017.07.046.Chai Y, Mao T. Recent advances in the genetics and gene therapy of retinoblastoma[J]. Jiangxi Medical Journal, 2017, 52(7): 704-707. DOI: 10.3969/j.issn.1006-2238.2017.07.046.
- 4. 中华医学会眼科学分会眼底病学组, 中华医学会儿科学分会眼科学组, 中华医学会眼科学分会眼整形眼眶病学组. 中国视网膜母细胞瘤诊断和治疗指南(2019年)[J]. 中华眼科杂志, 2019, 55(10): 726-738. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.003.Retinal Disease Group, Ophthalmology Group, Pediatrics Branch, Chinese Medical Association, Ophthalmic Plastic and Orbital Disease Group, Ophthalmology Branch, Ophthalmology Branch, Chinese Medical Association. Chinese guidelines for the diagnosis and treatment of tetinoblastoma (2019)[J]. Chin J Ophthalmol, 2019, 55(10): 726-738. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.003.
- 5. 李晓华, 何世坤. 眼科表观遗传学研究进展[J]. 中华眼科杂志, 2013, 49(6): 568-573. DOI: 10.3760/cma.j.issn.0412-4081.2013.06.02.Li XH, He SK. The advances of epigenetic research in eye[J]. Chinese Journal of Ophthalmology, 2013, 49(6): 568-573. DOI: 10.3760/cma.j.issn.0412-4081.2013.06.02.
- 6. Chai P, Jia R, Li Y, et al. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma[J/OL]. Prog Retin Eye Res, 2022, 89: 101030[2021-12-01]. https://pubmed.ncbi.nlm.nih.gov/34861419/. DOI: 10.1016/j.preteyeres.2021.101030.
- 7. Zhang J, Benavente CA, McEvoy J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses[J]. Nature, 2012, 481(7381): 329-334. DOI: 10.1038/nature10733.
- 8. Yazici H, Wu HC, Tigli H, et al. High levels of global genome methylation in patients with retinoblastoma[J]. Oncol Lett, 2020, 20(1): 715-723. DOI: 10.3892/ol.2020.11613.
- 9. 邢纹嘉, 孙悦丛, 郭滨, 等. 非编码RNA在眼内恶性肿瘤中的研究进展[J]. 国际免疫学杂志, 2024, 47(3): 283-288. DOI: 10.3760/cma.j.issn.1673-4394.2024.03.009.Xin WJ, Sun YC, Guo B, et al. Research progress of non-coding RNA in intraocular malignant tumors[J]. International Journal of Immunology, 2024, 47(3): 283-288. DOI: 10.3760/cma.j.issn.1673-4394.2024.03.009.
- 10. 荣先芳, 卢奕. 表观遗传学在眼科的研究进展[J]. 国际眼科纵览, 2014, 38(2): 80-86. DOI: 10.3760/cma.j.issn.1673-5803.2014.02.002.Rong XF, Lu Y. Epigenetic research progress in ophthalmology[J]. Int Rev Ophthalmol, 2014, 38(2): 80-86. DOI: 10.3760/cma.j.issn.1673-5803.2014.02.002.
- 11. Singh U, Malik MA, Goswami S, et al. Epigenetic regulation of human retinoblastoma[J]. Tumour Biol, 2016, 37(11): 14427-14441. DOI: 10.1007/s13277-016-5308-3.
- 12. Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia[J]. Adv Cancer Res, 1998, 72: 141-196. DOI: 10.1016/s0065-230x(08)60702-2.
- 13. Livide G, Epistolato MC, Amenduni M, et al. Epigenetic and copy number variation analysis in retinoblastoma by MS-MLPA[J]. Pathol Oncol Res, 2012, 18(3): 703-712. DOI: 10.1007/s12253-012-9498-8.
- 14. Li HT, Xu L, Weisenberger DJ, et al. Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy[J/OL]. Nat Commun, 2022, 13(1): 5523[2022-09-21]. https://pubmed.ncbi.nlm.nih.gov/36130950/. DOI: 10.1038/s41467-022-33248-2.
- 15. Liu H, Zhang Y, Zhang YY, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin[J]. Proc Natl Acad Sci USA, 2020, 117(52): 33628-33638. DOI: 10.1073/pnas.2011780117.
- 16. 张红侠, 陈彦舟, 祁健. 组蛋白修饰的研究进展[J]. 中国组织化学与细胞化学杂志, 2022, 31(1): 85-89. DOI: 10.16705/j.cnki.1004-1850.2022.01.014.Zhang HX, Chen YZ, Qi J. Advances in histone modification[J]. Chinese Journal of Histochemistry and Cytochemistry, 2022, 31(1): 85-89. DOI: 10.16705/j.cnki.1004-1850.2022.01.014.
- 17. Zhou L, Tong Y, Ho BM, et al. Etiology including epigenetic defects of retinoblastoma[J/OL]. Asia Pac J Ophthalmol (Phila), 2024, 13(3): 100072[2024-05-22]. https://pubmed.ncbi.nlm.nih.gov/38789041/. DOI: 10.1016/j.apjo.2024.100072.
- 18. Lin Z, Tang L, Chen S, et al. EZH2 expression in retinoblastoma: a potential therapeutic target[J]. Ophthalmic Res, 2023, 66(1): 1014-1019. DOI: 10.1159/000531530.
- 19. Khan M, Walters LL, Li Q, et al. Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma[J]. Lab Invest, 2015, 95(11): 1278-1290. DOI: 10.1038/labinvest.2015.104.
- 20. Jiang Y, Zheng G, Sun X. PRMT5 promotes retinoblastoma development[J]. Hum Cell, 2023, 36(1): 329-341. DOI: 10.1007/s13577-022-00807-0.
- 21. Bennett RL, Licht JD. Targeting epigenetics in cancer[J]. Annu Rev Pharmacol Toxicol, 2018, 58: 187-207. DOI: 10.1146/annurev-pharmtox-010716-105106.
- 22. Chai P, Jia R, Jia R, et al. Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis[J]. Nucleic Acids Res, 2018, 46(12): 6041-6056. DOI: 10.1093/nar/gky366.
- 23. Xu L, Li W, Shi Q, et al. MicroRNA-936 inhibits the malignant phenotype of retinoblastoma by directly targeting HDAC9 and deactivating the PI3K/AKT pathway[J]. Oncol Rep, 2020, 43(2): 635-645. DOI: 10.3892/or.2020.7456.
- 24. Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressors[J]. Dev Biol, 2007, 302(1): 1-12. DOI: 10.1016/j.ydbio.2006.08.028.
- 25. Marzi MJ, Puggioni EM, Dall'Olio V, et al. Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation[J]. J Cell Biol, 2012, 199(1): 77-95. DOI: 10.1083/jcb.201206033.
- 26. Dalgard CL, Gonzalez M, deNiro JE, et al. Differential microRNA-34a expression and tumor suppressor function in retinoblastoma cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(10): 4542-4551. DOI: 10.1167/iovs.09-3520.
- 27. Liu K, Huang J, Xie M, et al. MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell[J]. Autophagy, 2014, 10(3): 442-452. DOI: 10.4161/auto.27418.
- 28. Danda R, Krishnan G, Ganapathy K, et al. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy[J/OL]. PLoS One, 2013, 8(12): e83398[2013-12-31]. https://pubmed.ncbi.nlm.nih.gov/24391761/. DOI: 10.1371/journal.pone.0083398.
- 29. Conkrite K, Sundby M, Mukai S, et al. miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma[J]. Genes Dev, 2011, 25(16): 1734-1745. DOI: 10.1101/gad.17027411.
- 30. Jo DH, Kim JH, Cho CS, et al. STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters[J]. Oncotarget, 2014, 5(22): 11513-11525. DOI: 10.18632/oncotarget.2546.
- 31. Yang G, Fu Y, Zhang L, et al. miR106b regulates retinoblastoma Y79 cells through Runx3[J]. Oncol Rep, 2017, 38(5): 3039-3043. DOI: 10.3892/or.2017.5931.
- 32. Ghahramani Almanghadim H, Ghorbian S, Khademi NS, et al. New insights into the importance of long non-coding rnas in lung cancer: future clinical approaches[J]. DNA Cell Biol, 2021, 40(12): 1476-1494. DOI: 10.1089/dna.2021.0563.
- 33. Yan J, Deng YX, Cai YL, et al. LncRNA MIR17HG promotes the proliferation, migration, and invasion of retinoblastoma cells by up-regulating HIF-1α expression via sponging miR-155-5p[J]. Kaohsiung J Med Sci, 2022, 38(6): 554-564. DOI: 10.1002/kjm2.12523.
- 34. Lyu J, Wang Y, Zheng Q, et al. Reduction of circular RNA expression associated with human retinoblastoma[J]. Exp Eye Res, 2019, 184: 278-285. DOI: 10.1016/j.exer.2019.03.017.
- 35. Li L, Xia X, Yang T, et al. RNA methylation: a potential therapeutic target in autoimmune disease[J]. Int Rev Immunol, 2024, 43(3): 160-177. DOI: 10.1080/08830185.2023.2280544.
- 36. 陈星燕, 李雪, 付强. RNA甲基化在肺癌中的研究进展[J]. 实用肿瘤学杂志, 2024, 38(6): 421-426. DOI: 10.11904/j.issn.1002-3070.2024.06.011.Chen XY, Li X, Fu Q. Research progress of RNA methylation in lung cancer[J]. Practical Oncology Journal, 2024, 38(6): 421-426. DOI: 10.11904/j.issn.1002-3070.2024.06.011.
- 37. Zhang H, Zhang P, Long C, et al. m6A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway[J]. J Cell Mol Med, 2020, 24(21): 12368-12378. DOI: 10.1111/jcmm.15736.
- 38. Xie W, Shao Y, Bo Q, et al. FTO promotes the progression of retinoblastoma through YTHDF2-dependent N6-methyladenosine modification in E2F3[J]. Mol Carcinog, 2024, 63(5): 926-937. DOI: 10.1002/mc.23698.
- 39. Luo Y, He M, Yang J, et al. A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m6A-dependent activation of multiple oncogenes[J]. Sci China Life Sci, 2023, 66(9): 2138-2151. DOI: 10.1007/s11427-022-2288-4.
- 40. 李莉, 樊玉玺, 夏雨婷, 等. 染色质重塑复合物与基因表达调控的研究进展[J]. 实用医院临床杂志, 2022, 19(1): 177-180. DOI: 10.3969/j.issn.1672-6170.2022.01.048.Li L, Fan YX, Xia YT, et al. Advances in chromatin remodeling complexes and gene expression regulation[J]. Practical Journal of Clinical Medicine, 2022, 19(1): 177-180. DOI: 10.3969/j.issn.1672-6170.2022.01.048.
- 41. 陈卉, 王季石. 染色质重塑: 在疾病机制与治疗中的新视角[J]. 疑难病杂志, 2024, 23(8): 1016-1020. DOI: 10.3969/j.issn.1671-6450.2024.08.024.Chen H, Wang JS. Chromatin remodeling: new perspectives in disease mechanisms and therapy[J]. Chin J Diffic and Compl Cas, 2024, 23(8): 1016-1020. DOI: 10.3969/j.issn.1671-6450.2024.08.024.
- 42. 闫梦丽, 吴焕文, 梁智勇. SWI/SNF染色质重塑复合物在乳腺癌中的研究现状[J]. 临床与实验病理学杂志, 2021, 37(1): 65-68. DOI: 10.13315/j.cnki.cjcep.2021.01.016.Yan ML, Wu HW, Liang ZY. Research status of SWI / SNF chromatin remodeling complex in breast cancer[J]. J Clin Exp Pathol, 2021, 37(1): 65-68. DOI: 10.13315/j.cnki.cjcep.2021.01.016.
- 43. Gunawardena RW, Siddiqui H, Solomon DA, et al. Hierarchical requirement of SWI/SNF in retinoblastoma tumor suppressor-mediated repression of Plk1[J]. J Biol Chem, 2004, 279(28): 29278-29285. DOI: 10.1074/jbc.M400395200.
- 44. 林志烽, 陈旭, 李炳毅, 等. DNA甲基转移酶抑制剂抗肿瘤的免疫机制及其在肿瘤免疫治疗中的应用[J]. 细胞与分子免疫学杂志, 2017, 33(12): 1706-1710. DOI: 10.13423/j.cnki.cjcmi.008518.Lin ZF, Chen X, Li BY, et al. The anti-tumor immune mechanism of DNA methyltransferase inhibitors and its application in tumor immunotherapy[J]. Chin J Cell Mol Immunol, 2017, 33(12): 1706-1710. DOI: 10.13423/j.cnki.cjcmi.008518.
- 45. 杜亚楠, 李茹恬, 谢丽. 组蛋白去乙酰化酶抑制剂在乳腺癌中的研究进展[J]. 现代肿瘤医学, 2024, 32(24): 4674-4679. DOI: 10.3969/j.issn.1672-4992.2024.24.014.Du YN, Li RT, Xie L. Research progress of histone deacetylase inhibitors in breast cancer[J]. Modern Oncology, 2024, 32(24): 4674-4679. DOI: 10.3969/j.issn.1672-4992.2024.24.014.
- 46. Hoy SM. Tazemetostat: first approval[J]. Drugs, 2020, 80(5): 513-521. DOI: 10.1007/s40265-020-01288-x.
- 47. 邓玥, 黄洵. 表观遗传抗肿瘤药物的研发进展[J]. 中国肿瘤临床, 2023, 50(6): 278-285. DOI: 10.12354/j.issn.1000-8179.2023.20221256.Deng Y, Huang X, Advances in epigenetic anti-tumor drug development[J]. Chin J Clin Oncol, 2023, 50(6): 278-285. DOI: 10.12354/j.issn.1000-8179.2023.20221256.
- 48. Yu N, Chen P, Wang Q, et al. Histone deacetylase inhibitors differentially regulate c-Myc expression in retinoblastoma cells[J]. Oncol Lett, 2020, 19(1): 460-468. DOI: 10.3892/ol.2019.11111.