1. |
Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
|
2. |
Ambros V. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing[J]. Cell, 2003, 113(6):673-676.
|
3. |
Miska EA. How microRNAs control cell division, differentiation and death[J]. Curr Opin Genet Dev, 2005, 15(5):563-568.
|
4. |
Nussenblatt RB. Bench to bedside:new approaches to the immunotherapy of uveitic disease[J]. Int Rev Immunol, 2002, 21(2-3):273-289.
|
5. |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.
|
6. |
Kozomara A, Griffiths-Jones S. miRBase:annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Res, 2014, 42(Database issue):D68-73.
|
7. |
Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing[J]. Cell, 2008, 132(1):9-14.
|
8. |
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight?[J]. Nat Rev Genet, 2008, 9(2):102-114.
|
9. |
Karali M, Peluso I, Gennarino VA, et al. miRNeye:a microRNA expression atlas of the mouse eye[J]. BMC Genomics, 2010, 11:715.
|
10. |
Ryan DG, Oliveira-Fernandes M, Lavker RM. MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity[J]. Mol Vis, 2006, 12:1175-1184.
|
11. |
Frederikse PH, Donnelly R, Partyka LM. miRNA and Dicer in the mammalian lens:expression of brain-specific miRNAs in the lens[J]. Histochem Cell Biol, 2006, 126(1):1-8.
|
12. |
Xu S, Witmer PD, Lumayag S, et al. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster[J]. J Biol Chem, 2007, 282(34):25053-25066.
|
13. |
Nussenblatt RB, Fortin E, Schiffman R, et al. Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb:a phaseⅠ/Ⅱclinical trial[J]. Proc Natl Acad Sci USA, 1999, 96(13):7462-7466.
|
14. |
Gritz DC, Wong IG. Incidence and prevalence of uveitis in Northern California:the Northern California Epidemiology of Uveitis Study[J]. Ophthalmology, 2004, 111(3):491-500.
|
15. |
Caspi RR, Silver PB, Chan CC, et al. Genetic susceptibility to experimental autoimmune uveoretinitis in the rat is associated with an elevated Th1 response[J]. J Immunol, 1996, 157(6):2668-2675.
|
16. |
Horai R, Caspi RR. Cytokines in autoimmune uveitis[J]. J Interferon Cytokine Res, 2011, 31(10):733-744.
|
17. |
Agrawal R, Iyer J, Connolly J, et al. Cytokines and biologics in non-infectious autoimmune uveitis:bench to bedside[J]. Indian J Ophthalmol, 2014, 62(1):74-81.
|
18. |
Peng Y, Han G, Shao H, et al. Characterization of IL-17+interphotoreceptor retinoid-binding protein-specific T cells in experimental autoimmune uveitis[J]. Invest Ophthalmol Vis Sci, 2007, 48(9):4153-4161.
|
19. |
Na SY, Park MJ, Park S, et al. Up-regulation of Th17 and related cytokines in Behcet's disease corresponding to disease activity[J]. Clin Exp Rheumatol, 2013, 31(3 Suppl 77):S32-40.
|
20. |
O'Connell RM, Kahn D, Gibson WS, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development[J]. Immunity, 2010, 33(4):607-619.
|
21. |
Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity[J]. Nat Rev Immunol, 2013, 13(9):666-678.
|
22. |
Fisson S, Ouakrim H, Touitou V, et al. Cytokine profile in human eyes:contribution of a new cytokine combination for differential diagnosis between intraocular lymphoma or uveitis[J/OL]. PLoS One, 2013, 8(2):52385[2013-02-06].http://dx.plos.org/10.1371/journal.pone.0052385.
|
23. |
Chan CC, Sen HN. Current concepts in diagnosing and managing primary vitreoretinal (intraocular) lymphoma[J]. Discov Med, 2013, 15(81):93-100.
|
24. |
Wang Y, Shen D, Wang VM, et al. Molecular biomarkers for the diagnosis of primary vitreoretinal lymphoma[J]. Int J Mol Sci, 2011, 12(9):5684-5697.
|
25. |
Tuo J, Shen D, Yang HH, et al. Distinct microRNA-155 expression in the vitreous of patients with primary vitreoretinal lymphoma and uveitis[J]. Am J Ophthalmol, 2014, 157(3):728-734.
|
26. |
Agarwal RK, Silver PB, Caspi RR. Rodent models of experimental autoimmune uveitis[J]. Methods Mol Biol, 2012, 900:443-469.
|
27. |
Singh VK, Biswas S, Anand R, et al. Experimental autoimmune uveitis as animal model for human posterior uveitis[J]. Indian J Med Res, 1998, 107:53-67.
|
28. |
Ishida W, Fukuda K, Higuchi T, et al. Dynamic changes of microRNAs in the eye during the development of experimental autoimmune uveoretinitis[J]. Invest Ophthalmol Vis Sci, 2011, 52(1):611-617.
|
29. |
Tarrant TK, Silver PB, Chan CC, et al. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis[J]. J Immunol, 1998, 161(1):122-127.
|
30. |
Yu CR, Lee YS, Mahdi RM, et al. Therapeutic targeting of STAT3(signal transducers and activators of transcription 3) pathway inhibits experimental autoimmune uveitis[J/OL]. PLoS One, 2012, 7(1):29742[2012-01-05].http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0029742.
|
31. |
Escobar T, Yu CR, Muljo SA, et al. STAT3 activates miR-155 in Th17 cells and acts in concert to promote experimental autoimmune uveitis[J]. Invest Ophthalmol Vis Sci, 2013, 54(6):4017-4025.
|
32. |
Xu Y, Jin H, Yang X, et al. MicroRNA-93 inhibits inflammatory cytokine production in LPS-stimulated murine macrophages by targeting IRAK4[J]. FEBS Lett, 2014, 588(9):1692-1698.
|
33. |
Yang P, Fang W, Meng Q, et al. Clinical features of chinese patients with Behcet's disease[J]. Ophthalmology, 2008, 115(2):312-318.
|
34. |
Zhou Q, Xiao X, Wang C, et al. Decreased microRNA-155 expression in ocular Behcet's disease but not in Vogt Koyanagi Harada syndrome[J]. Invest Ophthalmol Vis Sci, 2012, 53(9):5665-5674.
|
35. |
Zhou Q, Hou S, Liang L, et al. MicroRNA-146a and Ets-1 gene polymorphisms in ocular Behcet's disease and Vogt-Koyanagi-Harada syndrome[J]. Ann Rheum Dis, 2014, 73(1):170-176.
|
36. |
Qi J, Hou S, Zhang Q, et al. A functional variant of pre-miRNA-196a2 confers risk for Behcet's disease but not for Vogt-Koyanagi-Harada syndrome or AAU in ankylosing spondylitis[J]. Hum Genet, 2013, 132(12):1395-1404.
|
37. |
Chu XK, Chan CC. Sympathetic ophthalmia:to the twenty-first century and beyond[J]. J Ophthalmic Inflamm Infect, 2013, 3(1):49.
|
38. |
Arevalo JF, Garcia RA, Al-Dhibi HA, et al. Update on sympathetic ophthalmia[J]. Middle East Afr J Ophthalmol, 2012, 19(1):13-21.
|
39. |
Kaneko Y, Wu GS, Saraswathy S, et al. Immunopathologic processes in sympathetic ophthalmia as signified by microRNA profiling[J]. Invest Ophthalmol Vis Sci, 2012, 53(7):4197-4204.
|
40. |
Seftor EA, Meltzer PS, Kirschmann DA, et al. Molecular determinants of human uveal melanoma invasion and metastasis[J]. Clin Exp Metastasis, 2002, 19(3):233-246.
|
41. |
Triozzi PL, Eng C, Singh AD. Targeted therapy for uveal melanoma[J]. Cancer Treat Rev, 2008, 34(3):247-258.
|
42. |
Nicoloso MS, Spizzo R, Shimizu M, et al. MicroRNAs--the micro steering wheel of tumour metastases[J]. Nat Rev Cancer, 2009, 9(4):293-302.
|
43. |
Yang C, Wei W. The miRNA expression profile of the uveal melanoma[J]. Sci China Life Sci, 2011, 54(4):351-358.
|
44. |
Liu N, Sun Q, Chen J, et al. MicroRNA-9 suppresses uveal melanoma cell migration and invasion through the NF-kappaB1 pathway[J]. Oncol Rep, 2012, 28(3):961-968.
|
45. |
Worley LA, Long MD, Onken MD, et al. Micro-RNAs associated with metastasis in uveal melanoma identified by multiplexed microarray profiling[J]. Melanoma Res, 2008, 18(3):184-190.
|