1. |
白玉婧, 黎晓新. 新生血管性老年性黄斑变性药物治疗面临的挑战与未来的发展趋势[J]. 中华眼底病杂志, 2016, 32(1): 3-7. DOI: 10.3760/cma.j.issn.1005-1015.2016.01.002.Bai YJ, Li XX. Progression and challenge of therapeutic strategies in neovascular age-related macular degeneration[J]. Chin J Ocul Fundus Dis, 2016, 32(1): 3-7. DOI: 10.3760/cma.j.issn.1005-1015.2016.01.002.
|
2. |
Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers[J]. Science, 2000, 287(5454): 820-825. DOI: 10.1126/science.287.5454.820.
|
3. |
Kanwar JR, Shankaranarayanan JS, Gurudevan S, et al. Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases[J]. Drug Discov Today, 2014, 19(9): 1309-1321. DOI: 10.1016/j.drudis.2014.02.009.
|
4. |
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505-510. DOI: 10.1126/science.2200121.
|
5. |
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818-822. DOI: 10.1038/346818a0.
|
6. |
Darmostuk M, Rimpelova S, Gbelcova H, et al. Current approaches in SELEX: an update to aptamer selection technology[J]. Biotechnol Adv, 2015, 33(6 Pt 2): 1141-1161. DOI: 10.1016/j.biotechadv.2015.02.008.
|
7. |
Sun H, Zu Y. A highlight of recent advances in aptamer technology and its application[J]. Molecules, 2015, 20(7): 11959-11980. DOI: 10.3390/molecules200711959.
|
8. |
Bruno JG. Predicting the uncertain future of aptamer-based diagnostics and therapeutics[J]. Molecules, 2015, 20(4): 6866-6887. DOI: 10.3390/molecules20046866.
|
9. |
Wang F, Rendahl KG, Manning WC, et al. AAV-mediated expression of vascular endothelial growth factor induces choroidal neovascularization in rat[J]. Invest Ophthalmol Vis Sci, 2003, 44(2): 781-790. DOI: 10.1167/iovs.02-0281.
|
10. |
Jellinek D, Green LS, Bell C, et al. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor[J]. Biochemistry, 1994, 33(34): 10450-10456. DOI: 10.1021/bi00200a028.
|
11. |
Bell C, Lynam E, Landfair DJ, et al. Oligonucleotide NX1838 inhibits VEGF165-mediated cellular responses in vitro[J]. In Vitro Cell Dev Biol Anim, 1999, 35(9): 533-542. DOI: 10.1007/s11626-999-0064-y.
|
12. |
Drolet DW, Nelson J, Tucker CE, et al. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys[J]. Pharm Res, 2000, 17(12): 1503-1510. DOI: 10.1023/A: 1007657109012.
|
13. |
Eyetech Study Group. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration[J]. Retina, 2002, 22(2): 143-152. DOI: 10.1097/00006982-200204000-00002.
|
14. |
Foy JW, Rittenhouse K, Modi M, et al. Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit[J]. J Ocul Pharmacol Ther, 2007, 23(5): 452-466. DOI: 10.1089/jop.2006.0149.
|
15. |
Eyetech Study Group. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase Ⅱ study results[J]. Ophthalmology, 2003, 110(5): 979-986. DOI: 10.1016/S0161-6420(03)00085-X.
|
16. |
Gragoudas ES, Adamis AP, Cunningham ET Jr, et al. Pegaptanib for neovascular age-related macular degeneration[J]. N Engl J Med, 2004, 351(27): 2805-2816. DOI: 10.1056/NEJMoa042760.
|
17. |
Siddiqui MA, Keating GM. Pegaptanib: in exudative age-related macular degeneration[J]. Drugs, 2005, 65(11): 1571-1579. DOI: 10.2165/00003495-200565110-00010.
|
18. |
CATT Research Group, Martin DF, Maguire MG, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2011, 364(20): 1897-1908. DOI: 10.1056/NEJMoa1102673.
|
19. |
Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2006, 355(14): 1419-1431. DOI: 10.1056/NEJMoa054481.
|
20. |
Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration[J]. Ophthalmology, 2012, 119(12): 2537-2548. DOI: 10.1016/j.ophtha.2012.09.006.
|
21. |
Li X, Xu G, Wang Y, et al. Safety and efficacy of conbercept in neovascular age-related macular degeneration: results from a 12-month randomized phase 2 study: AURORA study[J]. Ophthalmology, 2014, 121(9): 1740-1747. DOI: 10.1016/j.ophtha.2014.03.026.
|
22. |
Farah SE. Treatment of neovascular age-related macular degeneration with pegaptanib and boosting with bevacizumab or ranibizumab as needed[J]. Ophthalmic Surg Lasers Imaging, 2008, 39(4): 294-298. DOI: 10.3928/15428877-20080701-05.
|
23. |
Hernández-Pastor LJ, Ortega A, García-Layana A, et al. Cost-effectiveness of ranibizumab compared with pegaptanib in neovascular age-related macular degeneration[J]. Graefe’s Arch Clin Exp Ophthalmol, 2010, 248(4): 467-476. DOI: 10.1007/s00417-009-1156-9.
|
24. |
Athanasakis K, Fragoulakis V, Tsiantou V, et al. Cost-effectiveness analysis of ranibizumab versus verteporfin photodynamic therapy, pegaptanib sodium, and best supportive care for the treatment of age-related macular degeneration in Greece[J]. Clin Ther, 2012, 34(2): 446-456. DOI: 10.1016/j.clinthera.2012.01.005.
|
25. |
Nishimura Y, Taguchi M, Nagai T, et al. Comparison of the effect between pegaptanib and ranibizumab on exudative age-related macular degeneration with small lesion size[J]. Clin Ophthalmol, 2012, 6: 365-368. DOI: 10.2147/OPTH.S30310.
|
26. |
Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele[J]. Nature, 1996, 380(6573): 435-439. DOI: 10.1038/380435a0.
|
27. |
Nishijima K, Ng YS, Zhong L, et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury[J]. Am J Pathol, 2007, 171(1): 53-67. DOI: 10.2353/ajpath.2007.061237.
|
28. |
Saint-Geniez M, Kurihara T, Sekiyama E, et al. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris[J]. Proc Natl Acad Sci USA, 2009, 106(44): 18751-18756. DOI: 10.1073/pnas.0905010106.
|
29. |
Friberg TR, Tolentino M, LEVEL Study Group, et al. Pegaptanib sodium as maintenance therapy in neovascular age-related macular degeneration: the LEVEL study [J]. Br J Ophthalmol, 2010, 94(12): 1611-1617. DOI: 10.1136/bjo.2009.174946.
|
30. |
Ishibashi T, LEVEL-J Study Group. Maintenance therapy with pegaptanib sodium for neovascular age-related macular degeneration: an exploratory study in Japanese patients (LEVEL-J study)[J]. Jpn J Ophthalmol, 2013, 57(5): 417-423. DOI: 10.1007/s10384-013-0255-7.
|
31. |
Inoue M, Kadonosono K, Arakawa A, et al. Long-term outcome of intravitreal pegaptanib sodium as maintenance therapy in Japanese patients with neovascular age-related macular degeneration[J]. Jpn J Ophthalmol, 2015, 59(3): 173-178. DOI: 10.1007/s10384-015-0374-4.
|
32. |
Lindahl P, Johansson BR, Levéen P, et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice[J]. Science, 1997, 277(5323): 242-245. DOI: 10.1126/science.277.5323.242.
|
33. |
Dong A, Seidel C, Snell D, et al. Antagonism of PDGF-BB suppresses subretinal neovascularization and enhances the effects of blocking VEGF-A[J]. Angiogenesis, 2014, 17(3): 553-562. DOI: 10.1007/s10456-013-9402-5.
|
34. |
Green LS, Jellinek D, Jenison R, et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain[J]. Biochemistry, 1996, 35(45): 14413-14424. DOI: 10.1021/bi961544+.
|
35. |
Jaffe GJ, Eliott D, Wells JA, et al. A phase 1 study of intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration[J]. Ophthalmology, 2016, 123(1): 78-85. DOI: 10.1016/j.ophtha.2015.09.004.
|
36. |
Jaffe GJ, Ciulla TA, Ciardella AP, et al. Dual Antagonism of PDGF and VEGF in neovascular age-related macular degeneration: a phase Ⅱb, multicenter, randomized controlled trial[J]. Ophthalmology, 2017, 124(2): 224-234. DOI: 10.1016/j.ophtha.2016.10.010.
|
37. |
Mullins RF, Schoo DP, Sohn EH, et al. The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning[J]. Am J Pathol, 2014, 184(11): 3142-3153. DOI: 10.1016/j.ajpath.2014.07.017.
|
38. |
Reynolds R, Hartnett ME, Atkinson JP, et al. Plasma complement components and activation fragments: associations with age-related macular degeneration genotypes and phenotypes[J]. Invest Ophthalmol Vis Sci, 2009, 50(12): 5818-5827. DOI: 10.1167/iovs.09-3928.
|
39. |
Nozaki M, Raisler BJ, Sakurai E, et al. Drusen complement components C3a and C5a promote choroidal neovascularization[J]. Proc Natl Acad Sci USA, 2006, 103(7): 2328-2333. DOI: 10.1073/pnas.0408835103.
|
40. |
Cortright DN, Meade R, Waters SM, et al. C5a, but not C3a, increases VEGF secretion in ARPE-19 human retinal pigment epithelial cells[J]. Curr Eye Res, 2009, 34(1): 57-61. DOI: 10.1080/02713680802546658.
|
41. |
Coughlin B, Schnabolk G, Joseph K, et al. Connecting the innate and adaptive immune responses in mouse choroidal neovascularization via the anaphylatoxin C5a and γδT-cells[J]. Sci Rep, 2016, 6: 23794. DOI: 10.1038/srep23794.
|
42. |
Brandstetter C, Holz FG, Krohne TU. Complement component C5a primes retinal pigment epithelial cells for inflammasome activation by lipofuscin-mediated photooxidative damage[J]. J Biol Chem, 2015, 290(52): 31189-3198. DOI: 10.1074/jbc.M115.671180.
|
43. |
Bora PS, Sohn JH, Cruz JM, et al. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization[J]. J Immunol, 2005, 174(1): 491-497. DOI: 10.4049/jimmunol.174.1.491.
|
44. |
Biesecker G, Dihel L, Enney K, et al. Derivation of RNA aptamer inhibitors of human complement C5[J]. Immunopharmacology, 1999, 42(1-3): 219-230. DOI: 10.1016/S0162-3109 (99)00020-X.
|
45. |
Drolet DW, Green LS, Gold L, et al. Fit for the eye: aptamers in ocular disorders[J]. Nucleic Acid Ther, 2016, 26(3): 127-146. DOI: 10.1089/nat.2015.0573.
|