1. |
Vingerling JR, Dielemans I, Bots ML, et al. Age-related macular degeneration is associated with atherosclerosis: the rotterdam study[J]. Am J Epidemiol, 1995, 142(4): 404-409.
|
2. |
Vavvas DG, Daniels AB, Kapsala ZG, et al. Regression of some high-risk features of age-related macular degeneration (AMD) in patients receiving intensive statin treatment[J]. EBioMedicine, 2016, 5: 198-203.DOI: 10.1016/j.ebiom.2016.01.033.
|
3. |
Mullins RF, Russell SR, Anderson DH, et al. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease[J]. FASEB J, 2000, 14(7): 835-846.
|
4. |
Luchetti F, Canonico B, Cesarini E, et al. 7-ketocholesterol and 5,6-secosterol induce human endothelial cell dysfunction by differential mechanisms[J]. Steroids, 2015, 99(Pt B): 204-211.DOI: 10.1016/j.steroids.2015.02.008.
|
5. |
Chang MC, Chen YJ, Liou EJ, et al. 7-ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings, cytotoxicity and IL-8 production in endothelial cells[J]. Oncotarget, 2016, 7(46): 74473-74483.DOI: 10.18632/oncotarget.12578.
|
6. |
Rodriguez IR, Clark ME, Lee JW, et al. 7-ketocholesterol accumulates in ocular tissues as a consequence of aging and is present in high levels in drusen[J]. Exp Eye Res, 2014, 128: 151-155.DOI: 10.1016/j.exer.2014.09.009.
|
7. |
EF M, IM L, JW L, et al. 7-ketocholesterol is present in lipid deposits in the primate retina: potential implication in the induction of VEGF and CNV formation[J]. Invest Ophthalmol Vis Sci, 2009, 50(2): 523-532.DOI: 10.1167/iovs.08-2373.
|
8. |
Dzeletovic S, Babiker A, Lund E, et al. Time course of oxysterol formation during in vitro oxidation of low density lipoprotein[J]. Chem Phys Lipids, 1995, 78(2): 119-128.
|
9. |
Kritharides L, Kus M, Brown AJ, et al. Hydroxypropyl-beta-cyclodextrin-mediated efflux of 7-ketocholesterol from macrophage foam cells[J]. J Biol Chem, 1996, 271(44): 27450-27455.
|
10. |
Rodriguez IR, Fliesler SJ. Photodamage generates 7-keto- and 7-hydroxycholesterol in the rat retina via a free radical-mediated mechanism[J]. Photochem Photobiol, 2009, 85(5): 1116-1125.DOI: 10.1111/j.1751-1097.2009.00568.x.
|
11. |
Huang JD, Amaral J, Lee JW, et al. Sterculic acid antagonizes 7-ketocholesterol-mediated inflammation and inhibits choroidal neovascularization[J]. Biochim Biophys Acta, 2012, 1821(4): 637-646.DOI: 10.1016/j.bbalip.2012.01.013.
|
12. |
Yin LL, Shi YH, Liu XJ, et al. A rat model for studying the biological effects of circulating LDL in the choriocapillaris-BrM-RPE complex[J]. Am J Pathol, 2012, 180(2): 541-549.DOI: 10.1016/j.ajpath.2011.10.015.
|
13. |
Gordiyenko N, Campos M, Lee JW, et al. RPE cells internalize low-density lipoprotein (LDL) and oxidized LDL (oxLDL) in large quantities in vitro and in vivo[J]. Invest Ophthalmol Vis Sci, 2004, 45(8): 2822-2829.DOI: 10.1167/iovs.04-0074.
|
14. |
Gillotte KL, Horkko S, Witztum JL, et al. Oxidized phospholipids, linked to apolipoprotein B of oxidized LDL, are ligands for macrophage scavenger receptors[J]. J Lipid Res, 2000, 41(5): 824-833.
|
15. |
Rodriguez IR, Alam S, Lee JW. Cytotoxicity of oxidized low-density lipoprotein in cultured RPE cells is dependent on the formation of 7-ketocholesterol[J]. Invest Ophthalmol Vis Sci, 2004, 45(8): 2830-2837.DOI: 10.1167/iovs.04-0075.
|
16. |
Hughes H, Mathews B, Lenz ML, et al. Cytotoxicity of oxidized LDL to porcine aortic smooth muscle cells is associated with the oxysterols 7-ketocholesterol and 7-hydroxycholesterol[J]. Arterioscler Thromb, 1994, 14(7): 1177-1185.
|
17. |
Indaram M, Ma W, Zhao L, et al. 7-ketocholesterol increases retinal microglial migration, activation, and angiogenicity: a potential pathogenic mechanism underlying age-related macular degeneration[J]. Sci Rep, 2015, 5: 9144.DOI: 10.1038/srep09144.
|
18. |
Huang JD, Presley JB, Chimento MF, et al. Age-related changes in human macular Bruch’s membrane as seen by quick-freeze/deep-etch[J]. Exp Eye Res, 2007, 85(2): 202-218.DOI: 10.1016/j.exer.2007.03.011.
|
19. |
Pauleikhoff D, Harper CA, Marshall J, et al. Aging changes in Bruch’s membrane: a histochemical and morphologic study[J]. Ophthalmology, 1990, 97(2): 171-178.
|
20. |
Albert AD, Boesze-Battaglia K. The role of cholesterol in rod outer segment membranes[J]. Prog Lipid Res, 2005, 44(2-3): 99-124.DOI: 10.1016/j.plipres.2005.02.001.
|
21. |
Curcio CA, Messinger JD, Sloan KR, et al. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model[J]. Retina, 2013, 33(2): 265-276.DOI: 10.1097/IAE.0b013e31827e25e0.
|
22. |
Curcio CA, Millican CL, Bailey T, et al. Accumulation of cholesterol with age in human Bruch’s membrane[J]. Invest Ophthalmol Vis Sci, 2001, 42(1): 265-274.
|
23. |
Yu DY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease[J]. Prog Retin Eye Res, 2001, 20(2): 175-208.
|
24. |
Xu L, Sheflin LG, Porter NA, et al. 7-dehydrocholesterol-derived oxysterols and retinal degeneration in a rat model of Smith-Lemli-Opitz syndrome[J]. Biochim Biophys Acta, 2012, 1821(6): 877-883.DOI: 10.1016/j.bbalip.2012.03.001.
|
25. |
Qiu YT, Yuan Y, Wei Z, et al. Oxidized LDL induces apoptosis of human retinal pigment epithelium through activation of ERK-Bax/Bcl-2 signaling pathways[J]. Curr Eye Res, 2015, 40(4): 415-422.DOI: 10.3109/02713683.2014.927507.
|
26. |
Yin LL, Wu XW, Gong YY, et al. Ox-LDL up-regulates the vascular endothelial growth factor-to-pigment epithelium-derived factor ratio in human retinal pigment epithelial cells[J]. Curr Eye Res, 2011, 36(4): 379-385.DOI: 10.3109/02713683.2010.537427.
|
27. |
Gramajo AL, Zacharias LC, Neekhra A, et al. Mitochondrial DNA damage induced by 7-ketocholesterol in human retinal pigment epithelial cells in vitro[J]. Invest Ophthalmol Vis Sci, 2010, 51(2): 1164-1170.DOI: 10.1167/iovs.09-3443.
|
28. |
IM L, JD H, JW L, et al. 7-ketocholesterol-induced inflammation: involvement of multiple kinase signaling pathways via NFkappaB but independently of reactive oxygen species formation[J]. Invest Ophthalmol Vis Sci, 2010, 51(10): 4942-4955. DOI: 10.1167/iovs.09-4854.
|
29. |
Shi G, Chen S, Wandu WS, et al. Inflammasomes Induced by 7-ketocholesterol and other stimuli in RPE and in bone marrow-derived cells differ markedly in their production of IL-1beta and IL-18[J]. Invest Ophthalmol Vis Sci, 2015, 56(3): 1658-1664.DOI: 10.1167/iovs.14-14557.
|
30. |
Ong JM, Aoki AM, Seigel GM, et al. Oxysterol-induced toxicity in R28 and ARPE-19 cells[J]. Neurochem Res, 2003, 28(6): 883-891.
|
31. |
Dasari B, Prasanthi JR, Meiers C, et al. Differential effects of the estrogen receptor agonist estradiol on toxicity induced by enzymatically-derived or autoxidation-derived oxysterols in human ARPE-19 cells[J]. Curr Eye Res, 2013, 38(11): 1159-1171.DOI: 10.3109/02713683.2013.811257.
|
32. |
Lee JW, Huang JD, Rodriguez IR. Extra-hepatic metabolism of 7-ketocholesterol occurs by esterification to fatty acids via cPLA2alpha and SOAT1 followed by selective efflux to HDL[J]. Biochim Biophys Acta, 2015, 1851(5): 605-619.DOI: 10.1016/j.bbalip.2015.01.007.
|
33. |
Olivier E, Dutot M, Regazzetti A, et al. P2X7-pannexin-1 and amyloid beta-induced oxysterol input in human retinal cell: role in age-related macular degeneration?[J]. Biochimie, 2016, 127: 70-78.DOI: 10.1016/j.biochi.2016.04.014.
|
34. |
Amaral J, Lee JW, Chou J, et al. 7-ketocholesterol induces inflammation and angiogenesis in vivo: a novel rat model[J]. PLoS One, 2013, 8(2): 56099[2013-02-08]. http://dx.plos.org/10.1371/journal.pone.0056099. DOI: 10.1371/journal.pone.0056099.
|