1. |
Ohno-Matsui K, Ikuno Y, Lai TYY, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. DOI: 10.1016/j.preteyeres.2015.12.001.
|
2. |
谢红莉, 谢作揩, 叶景, 等. 我国青少年近视现患率及相关因素分析[J]. 中华医学杂志, 2010, 90(7): 439-442. DOI: 10.3760/cma.j.issn.0376-2491.2010.07.003.Xie HL, Xie ZK, Ye J, et al. Analysis of correlative factors and prevalence on China's youth myopia[J]. Natl Med J China, 2010, 90(7): 439-442. DOI: 10.3760/cma.j.issn.0376-2491.2010.07.003.
|
3. |
Cheung CMG, Arnold JJ, Holz FG, et al. Myopic choroidal neovascularization: review, guidance, and consensus statement on management[J]. Ophthalmology, 2017, 124(11): 1690-1711. DOI: 10.1016/j.ophtha.2017.04.028.
|
4. |
徐捷, 徐亮. 近视防控的六维度评估及防控模式[J]. 中华眼视光学与视觉科学杂志, 2018, 20(3): 129-132. DOI: 10.3760/cma.j.issn.1674-845X.2018.03.001.Xu J, Xu L. Six dimensional evaluation for myopia prevention and control[J]. Chin J Optom Ophthalmol Vis Sci, 2018, 20(3): 129-132. DOI: 10.3760/cma.j.issn.1674-845X.2018.03.001.
|
5. |
Gao LQ, Liu W, Liang YB, et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan Eye Study[J]. Arch Ophthalmol, 2011, 129(9): 1199-1204. DOI: 10.1001/archophthalmol.2011.230.
|
6. |
Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015, 159(5): 877-883. DOI: 10.1016/j.ajo.2015.01.022.
|
7. |
Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system (ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. DOI: 10.1016/j.preteyeres.2018.10.005.
|
8. |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
|
9. |
Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J/OL]. Nature Biomedical Engineering, 2017, 1(2): 0024[2017-01-30]. https://www.nature.com/articles/s41551-016-0024.
|
10. |
Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening[J]. JAMA, 2016, 316(22): 2366-2367. DOI: 10.1001/jama.2016.17563.
|
11. |
Lancet T. Artificial intelligence in health care: within touching distance[J/OL]. Lancet, 2018, 390(10114): 2739[2018-12-23]. https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(17)31540-4. DOI: 10.1016/S0140-6736(17)31540-4.
|
12. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. DOI: 10.1001/jama.2016.17216.
|
13. |
Poplin R, Varadarajan AV, Blumer K, et al. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning[J]. Nature Biomedical Engineering, 2018, 2(3): 158-164. DOI: 10.1038/s41551-018-0195-0.
|
14. |
Kemany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131. DOI: 10.1016/j.cell.2018.02.010.
|
15. |
Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(12): 1359-1366. DOI: 10.1001/jamaophthalmol.2018.4118.
|
16. |
Burlina PM, Joshi N, Pacheco D, et al. Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration[J]. JAMA Ophthalmol, 2017, 135(11): 1170-1176. DOI: 10.1001/jamaophthalmol.2018.4118.
|
17. |
Akram S, Javed MY, Hussain A, et al. Intensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniques[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2015, 27(6): 737-751.
|
18. |
Chen SJ, Cheng CY, Li AF, et al. Prevalence and associated risk factors of myopic maculopathy in elderly Chinese: the Shihpai eye study[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4868-4873. DOI: 10.1167/iovs.12-9919.
|
19. |
邓骏杰, 何鲜桂, 许迅. 高度近视巩膜厚度研究现状与进展[J]. 中华眼底病杂志, 2017, 33(1): 87-89. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.028.Deng JJ, He XG, Xu X. Scleral thickness in high myopic eyes[J]. Chin J Ocul Fundus Dis, 2017, 33(1): 87-89. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.028.
|
20. |
El Matri L, Bouladi M, Chebil A, et al. Choroidal thickness measurement in highly myopic eyes using SD-OCT[J]. Ophthalmic Surg Lasers Imaging, 2012, 43(6 Suppl): S38-43. DOI: 10.3928/15428877-20121001-02.
|
21. |
Xiong S, He X, Deng J, et al. Choroidal thickness in 3001 Chinese children aged 6 to 19 years using swept-source OCT[J/OL]. Sci Rep, 2017, 7: 45059[2017-03-22]. http://dx.doi.org/10.1038/srep45059. DOI: 10.1038/srep45059.
|
22. |
Hayashi K, Ohno-Matsui K, Shimada N, et al. Long-term pattern of progression of myopic maculopathy[J]. Ophthalmology, 2010, 117(8): 1595-1611. DOI: 10.1016/j.ophtha.2009.11.003.
|
23. |
Hayashi K, Ohno-Matsui K, Yoshida T, et al. Characteristics of patients with a favorable natural course of myopic choroidal neovascularization[J]. Graefe's Arch Clin Exp Ophthalmol, 2005, 243(1): 13-19. DOI: 10.1007/s00417-004-0960-5.
|
24. |
Jonas JB, Wang YX, Zhang Q, et al. Parapapillary gamma zone and axial elongation-associated optic disc rotation: the Beijing Eye Study[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 396-402. DOI: 10.1167/iovs.15-18263.
|
25. |
Battaglia PM, Iacono P, Romano F, et al. Fluorescein leakage and optical coherence tomography features of choroidal neovascularization secondary to pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 3175-3180. DOI: 10.1167/iovs.17-23640.
|
26. |
Antony BJ, Abràmoff MD, Harper MM, et al. A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes[J]. Biomed Opt Express, 2013, 4(12): 2712-2728. DOI: 10.1364/BOE.4.002712.
|
27. |
Liu X, Bi L, Xu Y. Robust deep learning method for choroidal vessel segmentation on swept source optical coherence tomography images[J]. Biomed Opt Express, 2019, 10(4): 1601-1612. DOI: 10.1364/BOE.10.001601.
|
28. |
Cheng J, Liu J, Wong DWK, et al. Automatic optic disc segmentation with peripapillary atrophy elimination[J]. Conf Proc IEEE Eng Med Biol Soc, 2011, 2011: 6224-6227. DOI: 10.1109/IEMBS.2011.6091537.
|
29. |
Xu Y, Yan K, Kim J, et al. Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy[J]. Biomed Opt Express, 2017, 8(9): 4061-4076. DOI: 10.1364/BOE.8.004061.
|
30. |
Wolf-Dieter V, Waldstein SM, Gerendas BS, et al. Analyzing and predicting visual acuity outcomes of anti-VEGF therapy by a longitudinal mixed effects model of imaging and clinical data[J]. Invest Ophthalmol Vis Sci, 2017, 58(10): 4173-4181. DOI: 10.1167/iovs.17-21878.
|
31. |
Rohm M, Tresp V, Müller M, et al. Predicting visual acuity by using machine learning in patients treated for neovascular age-related macular degeneration[J]. Ophthalmology, 2018, 125(7): 1028-1036. DOI: 10.1016/j.ophtha.2017.12.034.
|
32. |
Schmidt-Erfurth U, Sadeghipour A, Gerendas B, et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29. DOI: 10.1016/j.preteyeres.2018.07.004.
|