1. |
Zhi Z, Pan M, Xie R, et al. The effect of temporal and spatial stimuli on the refractive status of guinea pigs following natural emmetropization[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 890-897. DOI: 10.1167/iovs.11-8064.
|
2. |
Ashby RS, Schaeffel F. The effect of bright light on lens compensation in chicks[J]. Invest Ophthalmol Vis Sci, 2010, 51(10): 5247-5253. DOI: 10.1167/iovs.09-4689.
|
3. |
Park SJ, Kim IJ, Looger LL, et al. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning[J]. J Neurosci, 2014, 34(11): 3976-3981. DOI: 10.1523/JNEUROSCI.5017-13.2014.
|
4. |
Freed MA. Asymmetry between ON and OFF alpha ganglion cells of mouse retina: integration of signal and noise from synaptic inputs[J]. J Physiol, 2017, 595(22): 6979-6991. DOI: 10.1113/JP274736.
|
5. |
Pickard GE, Sollars PJ. Intrinsically photosensitive retinal ganglion cells[J]. Rev Physiol Biochem Pharmacol, 2012, 162: 59-90. DOI: 10.1007/112_2011_4.
|
6. |
Pan F. Defocused image changes signaling of ganglion cells in the mouse retina[J/OL]. Cells, 2019, 8(7): 640[2019-06-26].http://www.mdpi.com/resolver?pii=cells8070640. DOI: 10.3390/cells8070640.
|
7. |
Mwachaka PM, Saidi H, Odula PO, et al. Effect of monocular deprivation on rabbit neural retinal cell densities[J]. J Ophthalmic Vis Res, 2015, 10(2): 144-150. DOI: 10.4103/2008-322X.163770.
|
8. |
Chakraborty R, Park HN, Hanif AM, et al. ON pathway mutations increase susceptibility to form-deprivation myopia[J]. Exp Eye Res, 2015, 137: 79-83. DOI: 10.1016/j.exer.2015.06.009.
|
9. |
Liu W, Khare SL, Liang X, et al. All Brn3 genes can promote retinal ganglion cell differentiation in the chick[J]. Development, 2000, 127(15): 3237-3247.
|
10. |
Turner EE, Jenne KJ, Rosenfeld MG. Brn-3.2: a Brn-3-related transcription factor with distinctive central nervous system expression and regulation by retinoic acid[J]. Neuron, 1994, 12(1): 205-218. DOI: 10.1016/0896-6273(94)90164-3.
|
11. |
Sengpiel F, Kind PC. The role of activity in development of the visual system[J]. Curr Biol, 2002, 12(23): 818-826. DOI: 10.1016/s0960-9822(02)01318-0.
|
12. |
Mui AM, Yang V, Aung MH, et al. Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina[J/OL]. PLoS One, 2018, 13(2): 0192435[2018-02-06].https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192435. DOI: 10.1371/journal.pone.0192435.
|
13. |
Cellerino AKohler K. Brain-derived neurotrophic factor/neurotrophin-4 receptor TrkB is localized on ganglion cells and dopaminergic amacrine cells in the vertebrate retina[J]. J Comp Neurol, 1997, 386(1): 149-160. DOI: 10.1002/(SICI)1096-9861(19970915)386:1<149::AID-CNE13>3.0.CO;2-F.
|
14. |
Chitranshi N, Dheer Y, Mirzaei M, et al. Loss of Shp2 rescues BDNF/TrkB signaling and contributes to improved retinal ganglion cell neuroprotection[J]. Mol Ther, 2019, 27(2): 424-441. DOI: 10.1016/j.ymthe.2018.09.019.
|
15. |
Xu L, Zhang Z, Xie T, et al. Inhibition of BDNF-AS provides neuroprotection for retinal ganglion cells against ischemic injury[J/OL]. PLoS One, 2016, 11(12): 0164941[2016-012-09]. http://dx.plos.org/10.1371/journal.pone.0164941. DOI: 10.1371/journal.pone.0164941.
|
16. |
Sanchez-Migallon MC, Valiente-Soriano FJ, Nadal-Nicolas FM, et al. Apoptotic retinal ganglion cell death after optic nerve transection or crush in mice: delayed RGC loss with BDNF or a caspase 3 inhibitor[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 81-93. DOI: 10.1167/iovs.15-17841.
|
17. |
Oshitari T, Yoshida-Hata N, Yamamoto S. Effect of neurotrophic factors on neuronal apoptosis and neurite regeneration in cultured rat retinas exposed to high glucose[J]. Brain Res, 2010, 1346: 43-51. DOI: 10.1016/j.brainres.2010.05.073.
|
18. |
Liang Y, Yu YH, Yu HJ, et al. Effect of BDNF-TrKB pathway on apoptosis of retinal ganglion cells in glaucomatous animal model[J]. Eur Rev Med Pharmacol Sci, 2019, 23(9): 3561-3568. DOI: 10.26355/eurrev_201905_17777.
|
19. |
Varella MH, de Mello FG, Linden R. Evidence for an antiapoptotic role of dopamine in developing retinal tissue[J]. J Neurochem, 1999, 73(2): 485-492. DOI: 10.1046/j.1471-4159.1999.0730485.x.
|
20. |
Dong J, Gao L, Han J, et al. Dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina independent of early synchronized spontaneous network activity[J]. Mol Neurobiol, 2017, 54(5): 3407-3417. DOI: 10.1007/s12035-016-9914-2.
|
21. |
Lin B, Wang SW. Masland RH retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts[J]. Neuron, 2004, 43(4): 475-485. DOI: 10.1016/j.neuron.2004.08.002.
|
22. |
Geeraerts E, Dekeyster E, Gaublomme D, et al. A freely available semi-automated method for quantifying retinal ganglion cells in entire retinal flatmounts[J]. Exp Eye Res, 2016, 147: 105-113. DOI: 10.1016/j.exer.2016.04.010.
|
23. |
Badea TC, Nathans J. Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter[J]. J Comp Neurol, 2004, 480(4): 331-351. DOI: 10.1002/cne.20304.
|
24. |
Jacoby J, Schwartz GW. Three small-receptive-field ganglion cells in the mouse retina are distinctly tuned to size, speed, and object motion[J]. J Neurosci, 2017, 37(3): 610-625. DOI: 10.1523/JNEUROSCI.2804-16.2016.
|
25. |
Schmidt TM, Kofuji P. Functional and morphological differences among intrinsically photosensitive retinal ganglion cells[J]. J Neurosci, 2009, 29(2): 476-482. DOI: 10.1523/JNEUROSCI.4117-08.2009.
|
26. |
Schmidt TM, Do MT, Dacey D, et al. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function[J]. J Neurosci, 2011, 31(45): 16094-17101. DOI: 10.1523/JNEUROSCI.4132-11.2011.
|