1. |
Rivera JC, Dabouz R, Noueihed B, et al. Ischemic retinopathies: oxidative stress and inflammation[J/OL]. Oxid Med Cell Longev, 2017, 2017: 3940241[2017-12-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749295/. DOI: 10.1155/2017/3940241.
|
2. |
Kang MH, Balaratnasingam C, Yu PK, et al. Alterations to vascular endothelium in the optic nerve head in patients with vascular comorbidities[J]. Exp Eye Res, 2013, 111: 50-60. DOI: 10.1016/j.exer.2013.03.005.
|
3. |
Vecino E, Rodriguez FD, Ruzafa N, et al. Glia-neuron interactions in the mammalian retina[J]. Prog Retin Eye Res, 2016, 51: 1-40. DOI: 10.1016/j.preteyeres.2015.06.003.
|
4. |
Karlstetter M, Scholz R, Rutar M, et al. Retinal microglia: just bystander or target for therapy?[J]. Prog Retin Eye Res, 2015, 45: 30-57. DOI: 10.1016/j.preteyeres.2014.11.004.
|
5. |
Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy[J]. Vision Res, 2017, 139: 93-100. DOI: 10.1016/j.visres.2017.03.013.
|
6. |
Reichenbach A, Bringmann A. New functions of Müller cells[J]. Glia, 2013, 61(5): 651-678. DOI: 10.1002/glia.22477.
|
7. |
Abcouwer SF. Müller cell–microglia cross talk drives neuroinflammation in diabetic retinopathy[J]. Diabetes, 2017, 66(2): 261-263. DOI: 10.2337/dbi16-0047.
|
8. |
Wang M, Ma W, Zhao L, et al. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina[J]. J Neuroinflammation, 2011, 8: 173. DOI: 10.1186/1742-2094-8-173.
|
9. |
Li SY, Fung FK, Fu ZJ, et al. Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: in vivo and in vitro studies[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 5976-5984. DOI: 10.1167/iovs.12-10007.
|
10. |
Du L, Zhang Y, Chen Y, et al. Role of microglia in neurological disorder and their potentials as a therapeutic target[J]. Mol Neurobiol, 2017, 54(10): 7567-7584. DOI: 10.1007/s12035-016-0245-0.
|
11. |
Grigsby JG, Cardona SM, Pouw CE, et al. The role of microglia in diabetic retinopathy[J/OL]. J Ophthalmol, 2014, 2014: 705783[2014-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166427/. DOI: 10.1155/2014/705783.
|
12. |
Gatliff J, Campanella M. TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria[J]. Biochem J, 2016, 473(2): 107-121. DOI: 10.1042/BJ20150899.
|
13. |
Karlstetter M, Nothdurfter C, Aslanidis A, et al. Translocatorprotein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulatesmicroglial inflammation and phagocytosis[J]. J Neuroinflammation, 2014, 11: 3. DOI: 10.1186/1742-2094-11-3.
|
14. |
Wang M, Wang X, Zhao L, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activationin the mouse retina[J]. J Neurosci, 2014, 34(10): 3793-3806. DOI: 10.1523/JNEUROSCI.3153-13.2014.
|
15. |
Mages K, Grassmann F, Jägle H, et al. The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia[J]. J Neuroinflammation, 2019, 16(1): 43. DOI: 10.1186/s12974-019-1424-5.
|
16. |
Zhang B, Wu T, Chen M, et al. The CD40/CD40L system: a new therapeutic target for disease[J]. Immunol Lett, 2013, 153(1-2): 58-61. DOI: 10.1016/j.imlet.2013.07.005.
|
17. |
Reichenbach A, Bringmann A. Purinergic signaling in retinal degeneration and regeneration[J]. Neuropharmacology, 2016, 104: 194-211. DOI: 10.1016/j.neuropharm.2015.05.005.
|
18. |
Rech JC, Bhattacharya A, Letavic MA, et al. The evolution of P2X7 antagonists with a focus on CNS indications[J]. Bioorg Med Chem Lett, 2016, 26(16): 3838-3845. DOI: 10.1016/j.bmcl.2016.06.048.
|
19. |
Portillo JA, Greene JA, Okenka G, et al. CD40 promotes the development of early diabetic retinopathy in mice[J]. Diabetologia, 2014, 57(10): 2222-2231. DOI: 10.1007/s00125-014-3321-x.
|
20. |
Portillo JA, Corcino YL, Miao L, et al. CD40 in retinal Müller cells induces P2X7-dependent cytokine expression in macrophages/microglia in diabetic miceand development of early experimental diabetic retinopathy[J]. Diabetes, 2017, 66(2): 483-493. DOI: 10.2337/db16-0051.
|
21. |
Khalilpour S, Latifi S, Behnammanesh G, et al. Ischemic optic neuropathy as a model of neurodegenerative disorder: a review of pathogenic mechanism of axonal degeneration and the role of neuroprotection[J]. J Neurol Sci, 2017, 375: 430-441. DOI: 10.1016/j.jns.2016.12.044.
|
22. |
Harada T, Harada C, Kohsaka S, et al. Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration[J]. J Neurosci, 2002, 22(21): 9228-9236. DOI: 10.1523/JNEUROSCI.22-21-09228.2002.
|
23. |
Harada T, Harada C. Function of glial cell network as a modulator of neural cell death during retinal degeneration[J]. Nippon Ganka Gakkai Zasshi, 2004, 108(11): 674-681.
|
24. |
Guo XJ, Tian XS, Ruan Z, et al. Dysregulation of neurotrophic and inflammatory systems accompanied by decreased CREB signaling in ischemic rat retina[J]. Exp Eye Res, 2014, 125: 156-163. DOI: 10.1016/j.exer.2014.06.003.
|
25. |
Desmet SJ, De Bosscher K. Glucocorticoid receptors: finding the middle ground[J]. J Clin Invest, 2017, 127(4): 1136-1145. DOI: 10.1172/JCI88886.
|
26. |
Gallina D, Zelinka C, Fischer AJ. Glucocorticoid receptors in the retina, Müller glia and the formation of Müller glia-derived progenitors[J]. Development, 2014, 141(17): 3340-3351. DOI: 10.1242/dev.109835.
|
27. |
Fischer AJ, Zelinka C, Gallina D, et al. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors[J]. Glia, 2014, 62(10): 1608-1628. DOI: 10.1002/glia.22703.
|
28. |
Gallina D, Zelinka CP, Cebulla CM, et al. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity[J]. Exp Neurol, 2015, 273: 114-125. DOI: 10.1016/j.expneurol.2015.08.007.
|
29. |
Talia DM, Deliyanti D, Agrotis A, et al. Inhibition of the nuclear receptor RORϒ and interleukin-17a suppresses neovascular retinopathy involvement of immunocompetent microglia[J]. Arterioscler Thromb Vasc Biol, 2016, 36(6): 1186-1196. DOI: 10.1161/ATVBAHA.115.307080.
|
30. |
Roche SL, Ruiz-Lopez AM, Moloney JN, et al. Microglial-induced Müller cell gliosis is attenuated by progesterone in a mouse model of retinitis pigmentosa[J]. Glia, 2018, 66(2): 295-310. DOI: 10.1002/glia.23243.
|
31. |
Arroba AI, álvarez-Lindo N, van Rooijen N, et al. Microglia-Müller glia crosstalk in the rd10 mouse model of retinitis pigmentosa[J]. Adv Exp Med Bio, 2014, 801: 373-379. DOI: 10.1007/978-1-4614-3209-8_47.
|
32. |
Rutar M, Natoli R, Valter K, et al. Early focal expression of the chemokine Ccl2 by Müller cells during exposure to damage-inducing bright continuous light[J]. Invest Ophthalmol Vis Sci, 2011, 52(5): 2379-2388. DOI: 10.1167/iovs.10-6010.
|
33. |
Rutar M, Natoli R, Jan M Provis. Small interfering RNA-mediated suppression of Ccl2 in Müller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration[J]. J Neuroinflammation, 2012, 9: 221. DOI: 10.1186/1742-2094-9-221.
|
34. |
Wang M, Wong WT. Microglia-Müller cell interactions in the retina[J]. Adv Exp Med Biol, 2014, 801: 333-338. DOI: 10.1007/978-1-4614-3209-8_42.
|
35. |
Lenkowski JR, Raymond PA. Muller glia: stem cells for generation and regeneration of retinal neurons in teleost fish[J]. Prog Retin Eye Res, 2014, 40: 94-123. DOI: 10.1016/j.preteyeres.2013.12.007.
|
36. |
Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration[J]. Int J Mol Sci, 2018, 19(1): 110. DOI: 10.3390/ijms19010110.
|
37. |
Dharmarajan S, Fisk DL, Sorenson CM, et al. Microglia activation is essential for BMP7-mediated retinal reactive gliosis[J]. J Neuroinflammation, 2017, 14(1): 76. DOI: 10.1186/s12974-017-0855-0.
|
38. |
Bringmann A, Iandiev I, Pannicke T, et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects[J]. Prog Retin Eye Res, 2009, 28(6): 423-451. DOI: 10.1016/j.preteyeres.2009.07.001.
|