1. |
XU Y, ZHOU Y, WANG N, et al. Integrating haplotypes and single genetic variability effects of the Pax7 gene on growth traits in two cattle breeds[J]. Genome, 2013, 56(1): 9-15.
|
2. |
BORENSZTEIN M, MONNIER P, COURT F, et al. Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse[J]. Development, 2013, 140(6): 1231-1239.
|
3. |
ZAMMIT P S, GOLDING J P, NAGATA Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?[J]. J Cell Biol, 2004, 166(3): 347-357.
|
4. |
SACCO A, DOYONNAS R, KRAFT P, et al. Self-renewal and expansion of single transplanted muscle stem cells[J]. Nature, 2008, 456(7221): 502-506.
|
5. |
BOLDRIN L, MUNTONI F, MORGAN J E. Are human and mouse satellite cells really the same?[J]. J Histochem Cytochem, 2010, 58(11): 941-955.
|
6. |
DAY K, SHEFER G, SHEARER A, et al. The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny[J]. Dev Biol, 2010, 340(2): 330-343.
|
7. |
KUANG S, CHARGÉ S B, SEALE P, et al. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis[J]. J Cell Biol, 2006, 172(1): 103-113.
|
8. |
KUANG S, KURODA K, LE GRAND F, et al. Asymmetric self-renewal and commitment of satellite stem cells in muscle[J]. Cell, 2007, 129(5): 999-1010.
|
9. |
TEDESCO F S, DELLAVALLE A, DIAZ-MANERA J, et al. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells[J]. J Clin Invest, 2010, 120(1): 11-19.
|
10. |
CBIRESSI S, RANDO T A. Heterogeneity in the muscle satellite cell population[J]. Semin Cell Dev Biol, 2010, 21(8): 845-854.
|
11. |
JOE A W, YI L, NATARAJAN A, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis[J]. Nat Cell Biol, 2010, 12(2): 153-163.
|
12. |
ONO Y, BOLDRIN L, KNOPP P, et al. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles[J]. Dev Biol, 2010, 337(1): 29-41.
|
13. |
ONO Y, MASUDA S, NAM H S, et al. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle[J]. J Cell Sci, 2012, 125(Pt 5): 1309-1317.
|
14. |
ASAKURA A, HIRAI H, KABLAR B, et al. Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle[J]. Proc Natl Acad Sci U S A, 2007, 104(42): 16552-16557.
|
15. |
SHAVLAKADZE T, MCGEACHIE J, GROUNDS M D. Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice[J]. Biogerontology, 2010, 11(3): 363-376.
|
16. |
HIRAI H, VERMA M, WATANABE S, et al. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3[J]. J Cell Biol, 2010, 191(2): 347-365.
|
17. |
LINDSTRÖM M, PEDROSA-DOMELLÖF F, THORNELL L E. Satellite cell heterogeneity with respect to expression of MyoD, myogenin, Dlk1 and c-Met in human skeletal muscle: application to a cohort of power lifters and sedentary men[J]. Histochem Cell Biol, 2010, 134(4): 371-385.
|
18. |
LE GRAND F, GRIFONE R, MOURIKIS P, et al. Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration[J]. J Cell Biol, 2012, 198(5): 815-832.
|
19. |
GILBERT P M, HAVENSTRITE K L, MAGNUSSON K E, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture[J]. Science, 2010, 329(5995): 1078-1081.
|
20. |
WHITE R B, BIÉRINX A S, GNOCCHI V F, et al. Dynamics of muscle fibre growth during postnatal mouse development[J]. BMC Dev Biol, 2010, 10: 21.
|
21. |
TROY A, CADWALLADER A B, FEDOROV Y, et al. Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK[J]. Cell Stem Cell, 2012, 11(4): 541-553.
|
22. |
CHEUNG T H, QUACH N L, CHARVILLE G W, et al. Maintenance of muscle stem-cell quiescence by microRNA-489[J]. Nature, 2012, 482(7386): 524-528.
|
23. |
LAI E C. Notch signaling: control of cell communication and cell fate[J]. Development, 2004, 131(5): 965-973.
|
24. |
MOURIKIS P, SAMBASIVAN R, CASTEL D, et al. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state[J]. Stem Cells, 2012, 30(2): 243-252.
|
25. |
BJORNSON C R, CHEUNG T H, LIU L, et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells[J]. Stem Cells, 2012, 30(2): 232-242.
|
26. |
FUKADA S, YAMAGUCHI M, KOKUBO H, et al. Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers[J]. Development, 2011, 138(21): 4609-4619.
|
27. |
BRÖHL D, VASYUTINA E, CZAJKOWSKI M T, et al. Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on notch signals[J]. Dev Cell, 2012, 23(3): 469-481.
|
28. |
LIU W, WEN Y, BI P, et al. Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation[J]. Development, 2012, 139(16): 2857-2865.
|
29. |
MAJMUNDAR A J, SKULI N, MESQUITA R C, et al. O2 regulates skeletal muscle progenitor differentiation through phosphatidylinositol 3-kinase/AKT signaling[J]. Mol Cell Biol, 2012, 32(1): 36-49.
|
30. |
ROCHETEAU P, GAYRAUD-MOREL B, SIEGL-CACHEDENIER I, et al. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division[J]. Cell, 2012, 148(1-2): 112-125.
|
31. |
KAWABE Y, WANG Y X, MCKINNELL I W, et al. Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions[J]. Cell Stem Cell, 2012, 11(3): 333-345.
|