1. |
FRISTON K J, FRITH C D, LIDDLE P F, et al. Functional connectivity: the principal-component analysis of large (PET) data sets[J]. Journal of Cerebral Blood Flow and Metabolism, 1993, 13(1): 5-14.
|
2. |
FRISTON K J, FRITH C D, FRACKOWIAK R S J. Time-dependent changes in effective connectivity measured with PET[J]. Human Brain Mapping, 1993, 1(1): 69-79.
|
3. |
VAN DEN HEUVEL M P, HULSHOFF POL H E. Exploring the brain network: A review on resting-state fMRI functional connectivity[J]. European Neuropsychopharmacology, 2010, 20(8): 519-534.
|
4. |
SIEGEL M, DONNER T H, ENGEL A K. Spectral fingerprints of large-scale neuronal interactions[J]. Nature Reviews Neuroscience, 2012, 13(2): 121-134.
|
5. |
ZOU C L, LADROUE C, GUO S X, et al. Identifying interactions in the time and frequency domains in local and global networks--A Granger Causality Approach[J]. BMC Bioinformatics, 2010, 11: 337.
|
6. |
PENNY W D, STEPHAN K E, MECHELLI A, et al. Modelling functional integration: a comparison of structural equation and dynamic causal models[J]. Neuroimage, 2004, 23(Suppl 1): S264-S274.
|
7. |
PARK B, KIM D S, PARK H J. Graph independent component analysis reveals repertoires of intrinsic network components in the human brain[J]. PLoS One, 2014, 9(1): e82873.
|
8. |
BUGLI C, LAMBERT P. Comparison between principal component analysis and independent component analysis in electroencephalograms modelling[J]. Biom J, 2007, 49(2): 312-327.
|
9. |
GONALVES M S, HALL D A. Connectivity analysis with structural equation modelling: an example of the effects of voxel selection[J]. Neuroimage, 2003, 20(3): 1455-1467.
|
10. |
RAMNANI N, BEHRENS T E, PENNY W, et al. New approaches for exploring anatomical and functional connectivity in the human brain[J]. Biological psychiatry, 2004, 56(9): 613-619.
|
11. |
FRISTON K J, HARRISON L, PENNY W. Dynamic causal modeling[J]. Neuroimage, 2003, 19(4): 1273-1302.
|
12. |
KIEBEL S J, GARRIDO M I, MORAN R J. et al., Dynamic causal modelling for EEG and MEG[J]. Cogn Neurodyn, 2008, 2(2): 121-136.
|
13. |
PENNY W D, STEPHAN K, MECHELLI A, et al. Comparing dynamic causal models[J]. Neuroimage, 2004, 22(3): 1157-1172.
|
14. |
MECHELLI A, PRICE C J, NOPPENEY U, et al. A dynamic causal modeling study on category effects: bottom-up or top-down mediation?[J]. Journal of Cognitive Neuroscience, 2003, 15(7): 925-934.
|
15. |
HAYNES J D, TREGELLAS J, REES G. Attentional integration between anatomically distinct stimulus representations in early visual cortex[J]. Proc Natl Acad Sci U S A, 2005, 102(41): 14925-14930.
|
16. |
GAO W, TIAN Z. Learning Granger causality graphs for multivariate nonlinear time series[J]. Journal of Systems Science and Systems Engineering, 2009, 18(1): 38-52.
|
17. |
KAMISKI M, DING M Z, TRUCCOLO W A, et al. Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance[J]. Biol Cybern, 2001, 85(2): 145-157.
|
18. |
KANNAN R, TANGIRALA A K. Correntropy-based partial directed coherence for testing multivariate Granger causality in nonlinear processes[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2014, 89(6): 062144.
|
19. |
MCMAINS S, KASTNER S. Interactions of top-down and bottom-up mechanisms in human visual cortex[J]. J Neurosci, 2011, 31(2): 587-597.
|