1. |
Williams B. Occupational respiratory diseases. New England Journal of Medicine, 2000, 346(6): 406-413.
|
2. |
Dockery D W, Pope C A, Xu X, et al. An association between air pollution and mortality in six U. S. cities. N Engl J Med, 1993, 329(24): 1753-1759.
|
3. |
郭新彪, 魏红英. 大气 PM2.5 对健康影响的研究进展. 科学通报, 2013, 58(13): 1171-1177.
|
4. |
Bahmanzadeh H, Abouali O, Faramarzi M, et al. Numerical simulation of airflow and micro-particle deposition in human nasal airway pre-and post-virtual sphenoidotomy surgery. Comput Biol Med, 2015, 61: 8-18.
|
5. |
王斯民, 顾昕, 许世峰, 等. 鼻腔内物理场及气固两相流数值仿真研究进展. 国际耳鼻咽喉头颈外科杂志, 2016, 40(2): 65-70.
|
6. |
苏英锋, 刘迎曦, 孙秀珍, 等. 健康国人鼻腔气流场数值模拟研究. 中国耳鼻咽喉头颈外科, 2015(11): 545-547, 562.
|
7. |
Cisonni J, Lucey A D, King A J, et al. Numerical simulation of pharyngeal airflow applied to obstructive sleep apnea: effect of the nasal cavity in anatomically accurate airway models. Med Biol Eng Comput, 2015, 53(11): 1129-1139.
|
8. |
Xi Jinxiang, Yuan J E, Yang Mingan, et al. Parametric study on mouth-throat geometrical factors on deposition of orally inhaled aerosols. J Aerosol Sci, 2016, 99(SI): 94-106.
|
9. |
黄小青, 林江, 陈勇, 等. 高速气流对人体鼻腔温度场影响的数值研究. 广西大学学报: 自然科学版, 2016, 41(2): 562-569.
|
10. |
Van Rhein T, Alzahrany M, Banerjee A, et al. Fluid flow and particle transport in mechanically ventilated airways. Part I. Fluid flow structures. Med Biol Eng Comput, 2016, 54(7): 1085-1096.
|
11. |
Sracic M K. Modeled regional airway deposition of inhaled particlesin athletes at exertion. J Aerosol Sci, 2016, 99: 54-63.
|
12. |
Augusto L L X, Gonçalves J A S, Lopes G C. CFD evaluation of the influence of physical mechanisms, particle size, and breathing condition on the deposition of particulates in a triple bifurcation airway. Water, Air, & Soil Pollution, 2016, 227(2): 1-13.
|
13. |
Islam S, Saha S C, Sauret E, et al. Effects of velocity on diesel exhaust particle transport and deposition in the central airways of the human lung//ACCM, 2015, 18: 175-187.
|
14. |
Rahimi-Gorji M, Pourmehran O, Gorji-Bandpy M, et al. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. J Mol Liq, 2015, 209: 121-133.
|
15. |
Rahimi-Gorji M, Gorji T B, Gorji-Bandpy M. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Comput Biol Med, 2016, 74: 1-17.
|
16. |
Lintermann A, Schröder W. Simulation of aerosol particle deposition in the upper human tracheobronchial tract. Eur J Mech B Fluids, 2017, 63: 73-89.
|
17. |
Darquenne C. Aerosol deposition in the human lung in reduced gravity. J Aerosol Med Pulm Drug Deliv, 2014, 27(3): 170-177.
|
18. |
于申, 王吉喆, 孙秀珍, 等. 呼吸道内颗粒物沉积的数值模拟. 医用生物力学, 2016, 31(3): 193-198.
|
19. |
Dastan A, Abouali O, Ahmadi G. CFD simulation of total and regional fiber deposition in human nasal cavities. J Aerosol Sci, 2014, 69(10): 132-149.
|
20. |
Sturm R. A computer model for the simulation of nanoparticle deposition in the alveolar structures of the human lungs. J Transl Med, 2015, 3(19): 281.
|
21. |
Sturm R. Bioaerosols in the lungs of subjects with different ages-part 1: deposition modeling. J Transl Med, 2016, 4(11): 211.
|
22. |
Winkler-Heil R, Ferron G, Hofmann W. Calculation of hygroscopic particle deposition in the human lung. Inhal Toxicol, 2014, 26(3): 193-206.
|
23. |
Kabilan S, Suffield S R, Recknagle K P, et al. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways. J Aerosol Sci, 2016, 99(SI): 64-77.
|
24. |
Islam M S, Saha S C, Sauret E, et al. Numerical investigation of diesel exhaust particle transport and deposition in up to 17 generations of the lung airway//20th AFMC, Perth: 2016.
|
25. |
Borojeni A A T, Noga M L, Vehring R, et al. Measurements of total aerosol deposition in intrathoracicconducting airway replicas of children. J Aerosol Sci, 2014, 73(7): 39-47.
|
26. |
李福生, 徐新喜, 孙栋, 等. 气溶胶颗粒在人体上呼吸道模型内沉积的实验研究. 医用生物力学, 2013, 28(2): 135-141.
|
27. |
秦廷武. 临床生物力学基础. 北京: 军事医学科学出版社, 2015: 96.
|
28. |
Żywczyk Ł, Moskal A. Modeling of the influence of tissue mechanical properties on the process of aerosol particles deposition in a model of human alveolus. J Drug Deliv Sci Tec, 2012, 22(2): 153-159.
|
29. |
Darquenne C. Aerosol deposition in health and disease. J Aerosol Med Pulm Drug Deliv, 2012, 25(3): 140-147.
|
30. |
张鸿雁, 李彦辉, 崔海航. PM2.5 细颗粒物在肺腺泡区运动及沉积的数值模拟. 纳米技术与精密工程, 2015(4): 264-270.
|
31. |
Darquenne C, Harrington L, Prisk G K. Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study. Philos Trans A Math Phys Eng Sci, 2009, 367(1896): 2333-2346.
|
32. |
Federspiel W J, Fredberg J J. Axial dispersion in respiratory bronchioles and alveolar ducts. J Appl Physiol, 1988, 64(6): 2614-2621.
|
33. |
Sznitman J, Heimsch F, Heimsch T, et al. Three-dimensional convective alveolar flow induced by rhythmic breathing motion of the pulmonary acinus. J Biomech Eng, 2007, 129(5): 658-665.
|
34. |
Sznitman J, Heimsch T, Wildhaber J H, et al. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. J Biomech Eng, 2009, 131(3): 031010.
|
35. |
Ma Baoshun, Darquenne C. Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions. J Appl Physiol, 2011, 110(5): 1271-1282.
|
36. |
Khajeh-Hosseini-Dalasm N, Longest P W. Deposition of particles in the alveolar airways: inhalation and Breath-Hold with pharmaceutical aerosols. J Aerosol Sci, 2015, 79: 15-30.
|
37. |
Oakes J M, Day S, Weinstein S J, et al. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry. J Biomech Eng, 2010, 132(2): 021008.
|
38. |
Johannes C S, Sonja I M, Marco S, Evidence and structural mechanism for late lung alveolarization. Am J Physiol. Lung Cell Mol Pphysiol, 2008, 294: L246-L254.
|
39. |
Moraes C, Mehta G, Lesher-Perez S C, et al. Organs-on-a-chip: a focus on compartmentalized microdevices. Ann Biomed Eng, 2012, 40(6): 1211-1227.
|
40. |
陈晓乐, 钟文琪, 金保异. 可吸入颗粒污染物在下呼吸道运动和沉积规律的数值模拟. 东南大学学报: 自然科学版, 2011, 41(2): 393-399.
|
41. |
Darquenne C, Lamm W J, Fine J M, et al. Total and regional deposition of inhaled aerosols in supine healthy subjects and subjects with mild-to-moderate COPD. J Aerosol Sci, 2016, 99: 27-39.
|
42. |
Wang Yibo, Watts A B, Peters J I, et al. The impact of pulmonary diseases on the fate of inhaled medicines--a review. Int J Pharm, 2014, 461(1/2): 112-128.
|
43. |
Yang M Y, Chan J G, Chan H K. Pulmonary drug delivery by powder aerosols. J Control Release, 2014, 193: 228-240.
|
44. |
Phalen R F, Raabe O G. The evolution of inhaled particle dose modeling: A review. J Aerosol Sci, 2016, 99(SI): 7-13.
|
45. |
Feng Yu, Kleinstreuer C, Castro N, et al. Computational transport, phase change and deposition analysis of inhaled multicomponent droplet-vapor mixtures in an idealized human upper lung model. J Aerosol Sci, 2016, 96: 96-123.
|
46. |
Hoppentocht M, Hagedoorn P, Frijlink H W, et al. Technological and practical challenges of dry powder inhalers and formulations. Adv Drug Deliv Rev, 2014, 75(2): 18-31.
|
47. |
Krafcik A, Babinec P, Frollo I. Computational analysis of magnetic field induced deposition of magnetic particles in lung alveolus in comparison to deposition produced with viscous drag and gravitational force. J Magn Magn Mater, 2015, 380(3): 46-53.
|