1. |
Kalia L V. Lang A E, Parkinson’s disease. Lancet, 2015, 386(9996): 896-912.
|
2. |
Schneider S A, Obeso J A. Clinical and pathological features of Parkinson’s disease. Curr Top Behav Neurosci, 2014, 22: 205-220.
|
3. |
Francesca M, Alessandro P, Pierluigi T, et al. Pathophysiology of motor dysfunction in parkinson’s disease as the rationale for drug treatment and rehabilitation. parkinson’s disease, 2016, 2016: 1-18.
|
4. |
Herraiz T. N-methyltetrahydropyridines and pyridinium cations as toxins and comparison with naturally-occurring alkaloids. Food and Chemical Toxicology, 2016, 97: 23-39.
|
5. |
王玉敏, 赵丽楠, 崔其福, 等. 内源性神经毒素 1-甲基-6,7-二羟基-1,2,3,4-四氢异喹啉在帕金森病模型中的研究进展. 中国药学杂志, 2016, 51(9): 685-689.
|
6. |
Islam M T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res, 2017, 39(1): 73-82.
|
7. |
Wang Fuli, Ni Junjun, Wang Xianghan, et al. Salsolinol damaged neuroblastoma SH-SY5Y cells induce proliferation of human monocyte THP-1 cells through the mTOR pathway in a co-culture system. Neurochem Res, 2015, 40(5): 932-941.
|
8. |
Qualls Z, Brown D, Ramlochansingh C, et al. Protective effects of curcumin against rotenone and Salsolinol-Induced toxicity: implications for parkinson’s disease. Neurotox Res, 2014, 25(1): 81-89.
|
9. |
Możdżeń E, Kajta M, Wasik A, et al. Salsolinol, an endogenous compound triggers a Two-Phase opposing action in the central nervous system. Neurotox Res, 2015, 27(3): 300-313.
|
10. |
崔占军, 赵凯冰, 邓锦波. 长期酒精暴露对小鼠海马及大脑皮质神经细胞的影响. 药学学报, 2016(4): 573-579.
|
11. |
Mcclain J A, Morris S A, Marshall S A, et al. Ectopic hippocampal neurogenesis in adolescent male rats following alcohol dependence. Addict Biol, 2014, 19(4): 687-699.
|
12. |
Peana A T, Rosas M, Porru S, et al. From ethanol to salsolinol: role of ethanol metabolites in the effects of ethanol. J Exp Neurosci, 2016, 10: 137-146.
|
13. |
Quintanilla M E, Rivera-Meza M, Berrios-Carcamo P, et al. (R)-Salsolinol, a product of ethanol metabolism, stereospecifically induces behavioral sensitization and leads to excessive alcohol intake. Addict Biol, 2016, 21(6): 1063-1071.
|
14. |
Quintanilla M E, Rivera-Meza M, Berrios-Carcamo P, et al. Salsolinol, free of isosalsolinol, exerts ethanol-like motivational/sensitization effects leading to increases in ethanol intake. Alcohol, 2014, 48: 551-559.
|
15. |
Zuo Wanhong, Fu Rao, Hopf F W, et al. Ethanol drives aversive conditioning through dopamine 1 receptor and glutamate receptor-mediated activation of lateral habenula neurons. Addict Biol, 2017, 22(1): 103-116.
|
16. |
Rodd Z A, Oster S M, Ding Zm, et al. The reinforcing properties of salsolinol in the ventral tegmental area: evidence for regional heterogeneity and the involvement of serotonin and dopamine. Alcohol Clin Exp Res, 2008, 32(2): 230-239.
|
17. |
Melis M, Carboni E, Caboni P, et al. Key role of salsolinol in ethanol actions on dopamine neuronal activity of the posterior ventral tegmental area. Addict Biol, 2015, 20(1): 182-193.
|
18. |
Xie G, Hipólito L, Zuo W, et al. Salsolinol stimulates dopamine neurons in slices of posterior ventral tegmental area indirectly by activating μ-opioid receptors. Journal of Pharmacology & Experimental Therapeutics, 2012, 341(1): 43-50.
|
19. |
Marti-Prats L, Orrico A, Polache A, et al. Dual motor responses elicited by ethanol in the posterior VTA: Consequences of the blockade of mu-opioid receptors. Journal of Psychopharmacology, 2015, 29(9): 1029-1034.
|
20. |
Xie Guiqin, Krnjevic K, Ye Jianghong. Salsolinol modulation of dopamine neurons. Front Behav Neurosci, 2013, 7(2): 183-188.
|
21. |
Xie Guiqin, Ye Jianghong. Salsolinol facilitates glutamatergic transmission to dopamine neurons in the posterior ventral tegmental area of rats. PLoS One, 2012, 7(5): e36716.
|
22. |
Berríos-Cárcamo P, Quintanilla M E, Herrera-Marschitz M, et al. Racemic salsolinol and its enantiomers act as agonists of the μ-Opioid receptor by activating the Gi protein-adenylate cyclase pathway. Front Behav Neurosci, 2016, 10: 253.
|
23. |
Hashizume T, Onodera Y, Shida R, et al. Characteristics of prolactin-releasing response to salsolinol(SAL) and thyrotropin-releasing hormone(TRH) in ruminants. Domest Anim Endocrinol, 2009, 36(2): 99-104.
|
24. |
Inaba Y, Kato Y, Itou A, et al. Effects of extracerebral dopamine on salsolinol-or thyrotropin-releasing hormone-induced prolactin (PRL) secretion in goats. Animal Science Journal, 2016, 87(12): 1522-1527.
|
25. |
Jin Jin, Hara S, Sawai K, et al. Effects of hypothalamic dopamine (DA) on salsolinol (SAL)-induced prolactin (PRL) secretion in male goats. Animal Science Journal, 2014, 85(4): 461-467.
|
26. |
Górski K, Marciniak E, Zielińskagórska M, et al. Salsolinol upregulates oxytocin expression and release during lactation in sheep. J Neuroendocrinol, 2016, 28(3): 1-9.
|
27. |
Hasiec M, Tomaszewska-Zaremba D, Misztal T, Suckling and salsolinol attenuate responsiveness of the hypothalamic-pituitary-adrenal axis to stress: focus on catecholamines. corticotrophin-releasing hormone, adrenocorticotrophic hormone, cortisol and prolactin secretion in lactating sheep. J Neuroendocrinol, 2014, 26(12): 844-852.
|
28. |
Hasiec M, Herman A P, Misztal T. Salsolinol: a potential modulator of the activity of the hypothalamic-pituitary-adrenal axis in nursing and postweaning sheep. Domest Anim Endocrinol, 2015, 53: 26-34.
|
29. |
Marciniak E, Hasiec M, Fulop F, et al. Salsolinol-a potential inhibitor of the gonadotropic axis in sheep during lactation. Domest Anim Endocrinol, 2017, 58: 97-103.
|
30. |
Kurnik M, Gil K, Gajda M, et al. Neuropathic alterations of the myenteric plexus neurons following subacute intraperitoneal administration of salsolinol. Folia Histochemica et Cytobiologica, 2015, 53(1): 49-61.
|
31. |
Naoi M, Maruyama W, Dostert P, et al. A novel enzyme enantio-selectively synthesizes (R)salsolinol, a precursor of a dopaminergic neurotoxin, N-methyl (R)salsolinol. Neurosci Lett, 1996, 212(3): 183-186.
|
32. |
Chen X C, Chen Y, Wu G S, et al. Existence and characterization of Salsolinol synthase in neuronal cells and rat brain. Neurochemical Journal, 2013, 7(3): 192-197.
|