1. |
Bashashati A, Brinkman R R. A survey of flow cytometry data analysis methods. Advances in Bioinformatics, 2009, 2009: 584603.
|
2. |
Jahn K, Buschmann V, Hille C. Simultaneous fluorescence and phosphorescence lifetime imaging microscopy in living cells. Sci Rep, 2015, 5(6262): 739-740.
|
3. |
张文昌, 祝连庆, 娄小平, 等. 基于灰色预测恢复算法的流式细胞仪多参数提取. 仪器仪表学报, 2015, 36(7): 1660-1665.
|
4. |
Krutzik P O, Irish J M, Nolan G P, et al. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol, 2004, 110(3): 206-221.
|
5. |
Brie D, Klotz R, Miron S, et al. Joint analysis of flow cytometry data and fluorescence spectra as a non-negative array factorization problem. Chemometrics and Intelligent Laboratory Systems, 2014, 137(23): 21-32.
|
6. |
Qian Yu, Wei C, Lee F H, et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom, 2010, 78B(1): S69-S82.
|
7. |
Aghaeepour N, Nikolic R, Hoos H H, et al. Rapid cell population identification in flow cytometry data. Cytometry Part A, 2011, 79A(1): 6-13.
|
8. |
Zeng Q T, Pratt J P, Pak J, et al. Feature-guided clustering of multi-dimensional flow cytometry datasets. Journal of Biomedical Informatics, 2007, 40(3): 325-331.
|
9. |
Sugár I P, Sealfon S C. Misty mountain clustering: application to fast unsupervised flow cytometry gating. BMC Bioinformatics, 2010, 11(1): 502.
|
10. |
Morris C W, Autret A, Boddy L. Support vector machines for identifying organisms - a comparison with strongly partitioned radial basis function networks. Ecological Modelling, 2001, 146(1/3, SI): 57-67.
|
11. |
Boedigheimer M J, Ferbas J. Mixture modeling approach to flow cytometry data. Cytometry Part A, 2008, 73A(5): 421-429.
|
12. |
Pedreira C E, Costa E S, Lecrevisse Q, et al. Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends in Biotechnology, 2013, 31(7): 415-425.
|
13. |
Ghaleb T A, Mohammed M A, Ramadan E. Automated analysis of flow cytometry data: a systematic review of recent methods//2016 2nd International Conference On Open Source Software Computing (OSSCOM), IEEE, 2016: 1-7.
|
14. |
张雨晨. 基于改进的SVM和t-SNE高速列车走行部故障诊断. 成都: 西南交通大学, 2016.
|
15. |
徐佳琳, 左国坤. 基于互信息与主成分分析的运动想象脑电特征选择算法. 生物医学工程学杂志, 2016, 33(2): 201-207.
|
16. |
姜战伟, 郑近德, 潘海洋, 等. 基于多尺度时不可逆与t-SNE流形学习的滚动轴承故障诊断. 振动与冲击, 2017, 36(17): 61-68.
|
17. |
Gu Yuhai, He Linfeng, Deng Yali, et al. A fault identification method of rotating machinery based on t-SNE. 仪器仪表学报, 2016(s1): 152-156.
|
18. |
马闪闪, 董明利, 张帆, 等. 基于核主成分分析的流式细胞数据分群方法研究. 生物医学工程学杂志, 2017, 34(1): 115-122.
|
19. |
张婷婷, 孙群, 杨磊, 等. 基于电子鼻传感器阵列优化的甜玉米种子活力检测. 农业工程学报, 2017, 33(21): 275-281.
|
20. |
高国琴, 李明. 基于K-means算法的温室移动机器人导航路径识别. 农业工程学报, 2014, 30(7): 25-33.
|
21. |
Zhang Wenchang, Lou Xiaoping, Meng Xiaochen, et al. Representation method for spectrally overlapping signals in flow cytometry based on fluorescence pulse time-delay estimation. Sensors, 2016, 16(11): 1978.
|
22. |
Zhang W, Zhu L, Lou X, et al. New method of evaluating the liquid path stability of flow cytometer// International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale. IEEE, 2016: 316-320.
|