1. |
Finkelberg D L, Sahani D, Deshpande V, et al. Autoimmune pancreatitis. N Engl J Med, 2009, 355(25): 2670-2676.
|
2. |
Ferrone C R, Pieretti-Vanmarcke R, Bloom J P, et al. Pancreatic ductal adenocarcinoma: Long-term survival does not equal cure. Surgery, 2012, 152(3): S43-S49.
|
3. |
Vijayakumar A, Vijayakumar A. Imaging of focal autoimmune pancreatitis and differentiating it from pancreatic cancer. ISRN Radiology, 2013(4): 569489.
|
4. |
Meng Qianqian, Xin Lei, Liu Wenyu, et al. Diagnosis and treatment of autoimmune pancreatitis in China: a systematic review. PLoS One, 2015, 10(6): e0130466.
|
5. |
王珏磊, 杨云生, 梁浩, 等. 自身免疫性胰腺炎不同诊断标准间诊断率的差异及其主要影响因素分析. 中华内科杂志, 2013, 52(6): 498-502.
|
6. |
O’Reilly D A, Malde D J, Duncan T, et al. Review of the diagnosis, classification and management of autoimmune pancreatitis. World J Gastrointest Pathophysiol, 2014, 5(2): 71-81.
|
7. |
Shimosegawa T, Chari S T, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas, 2011, 40(3): 352-358.
|
8. |
Zhang J, Jia G, Zuo C, et al. 18 F-FDG PET/CT helps differentiate autoimmune pancreatitis from pancreatic cancer. BMC Cancer, 2017, 17(1): 695.
|
9. |
王绍波, 吴湖炳, 王全师, 等. 自身免疫性胰腺炎的18F-FDG PET/CT特征. 临床放射学杂志, 2016, 35(5): 736-739.
|
10. |
朱凌云, 吴宝明, 曹长修. 医学数据挖掘的技术、方法及应用. 生物医学工程学杂志, 2003, 20(3): 559-562.
|
11. |
Gazit L, Chakraborty J, Attiyeh M, et al. Quantification of CT images for the classification of high- and low-risk pancreatic cysts// SPIE Medical Imaging, 2017. Orlando: SPIE, 2017: 101340X.
|
12. |
Zhu Maoling, Xu Can, Yu J, et al. Differentiation of pancreatic cancer and chronic pancreatitis using computer-aided diagnosis of endoscopic ultrasound (EUS) images: a diagnostic test. PLoS One, 2013, 8(5): e63820.
|
13. |
Zhu J, Wang L, Chu Y, et al. A new descriptor for computer-aided diagnosis of EUS imaging to distinguish autoimmune pancreatitis from chronic pancreatitis. Gastrointest Endosc, 2015, 82(5): 831-836.
|
14. |
Schölkopf B, Smola A J. Learning with kernels: support vector machines, regularization, optimization, and beyond. Cambridge: MIT Press, 2002, 98(462): 489.
|
15. |
Cho J, Lee K, Shin E, et al. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?. arXiv: 1511.06348, 2016.
|
16. |
Pudil P, Novovičová J, Kittler J. Floating search methods in feature selection. Pattern Recogn Lett, 1994, 15(11): 1119-1125.
|
17. |
Vallières M, Freeman C R, Skamene S R, et al. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol, 2015, 60(14): 5471-5496.
|
18. |
Haghighat M, Zonouz S, Abdel-Mottaleb M. Identification using encrypted biometrics// Wilson R, Hancock E, Bors A, et al. CAIP 2013: Computer Analysis of Images and Patterns. Springer Berlin Heidelberg, 2013: 440-448.
|
19. |
Hadjidemetriou E, Grossberg M D, Nayar S K. Multiresolution histograms and their use for recognition. IEEE Trans Pattern Anal Mach Intell, 2004, 26(7): 831-847.
|
20. |
Pieper S, Halle M, Kikinis R. 3D Slicer// 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano To Macro. Arlington: IEEE, 2004, 1: 632-635.
|
21. |
Ozaki Y, Oguchi K, Hamano H, et al. Differentiation of autoimmune pancreatitis from suspected pancreatic cancer by fluorine-18 fluorodeoxyglucose positron emission tomography. J Gastroenterol, 2008, 43(2): 144-151.
|