1. |
Clerc M. Brain computer interfaces, principles and practise. Biomed Eng Online, 2013, 12(1): 1-4.
|
2. |
赵欣, 陈志堂, 王坤, 等. 运动想象脑-机接口新进展与发展趋势. 中国生物医学工程学报, 2019, 38(1): 84-93.
|
3. |
Scherer R, Müller G R, Neuper C, et al. An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans Biomed Eng, 2004, 51(6): 979-984.
|
4. |
Carlson T, Millan J D R. Brain-controlled wheelchairs: a robotic architecture. IEEE Robot Autom Mag, 2013, 20(1): 65-73.
|
5. |
Meng Jianjun, Zhang Shuying, Bekyo A, et al. Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci Rep, 2016, 6(1): 1-15.
|
6. |
郑玉甫, 许敏鹏, 明东. 脑-机接口操控效果差异及其预测研究综述. 中国生物医学工程学报, 2018, 37(6): 749-755.
|
7. |
Kang E S, Kim B C, Suk H I. An empirical suggestion for collaborative learning in motor imagery-based BCIs// 2016 4th International Winter Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2016: 1-3.
|
8. |
Zhou Yijie, Gu Bin, Dai Tingfei, et al. A multiuser collaborative strategy for MI-BCI system// 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). Shanghai: IEEE, 2018: 1-5.
|
9. |
尹锐, 曹勇, 姜劲, 等. 基于运动想象脑-机接口的外骨骼控制系统研究. 航天医学与医学工程, 2020, 33(3): 24-29.
|
10. |
陈睿, 伏云发. 基于 EEG 握力变化及想象单次识别研究. 南京大学学报(自然科学), 2020, 56(2): 159-166.
|
11. |
骆金晨, 姜月, 胡秀枋, 等. 基于多特征融合的多分类运动想象脑电信号识别研究. 生物信息学, 2020, 18(3): 176-185.
|
12. |
McGeady C, Vuckovic A, Puthusserypady S. A hybrid MI-SSVEP based brain computer interface for potential upper limb neurorehabilitation: a pilot study// 2019 7th International Winter Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2019: 1-6.
|
13. |
Ko L W, Ranga S S K, Komarov O, et al. Development of single-channel hybrid BCI system using motor imagery and SSVEP. J Healthc Eng, 2017(2017): 1-7.
|
14. |
Yi Weibo, Qiu Shuang, Wang Kun, et al. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP. J Neural Eng, 2016, 14(2): 026002.
|
15. |
Kim S K, Kim L. Identifying error features in a MI-BCI system using microstates// 2020 8th International Winter Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2020: 1-3.
|
16. |
Wu Xiaopei, Zhou Bangyan, Lv Zhao, et al. To explore the potentials of independent component analysis in brain-computer interface of motor imagery. IEEE J Biomed Health, 2020, 24(3): 775-787.
|
17. |
Lee D Y, Jeong J H, Shim K H, et al. Decoding movement imagination and execution from EEG signals using BCI-transfer learning method based on ration network// ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona: IEEE, 2020: 1354-1358.
|
18. |
Matran-Fernandez A, Poli R. Collaborative brain-computer interfaces for target localisation in rapid serial visual presentation// 2014 6th Computer Science and Electronic Engineering Conference (CEEC). Colchester: IEEE, 2014: 127-132.
|
19. |
Bhattacharyya S, Valeriani D, Cinel C, et al. Collaborative brain-computer interfaces to enhance group decisions in an outpost surveillance task// 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin: IEEE, 2019: 3099-3102.
|
20. |
Wang Yijun, Jung T-P. A collaborative brain-computer interface for improving human performance. PloS ONE, 2011, 6(5): 1-6.
|
21. |
陶学文, 奕伟波, 陈龙, 等. 复合肢体想象动作脑-机接口中黎曼核支持向量机递归特征筛选方法. 机械工程学报, 2019, 55(11): 131-137.
|
22. |
陈龙, 张磊, 王仲朋, 等. 功能性电刺激对运动想象皮层活动的影响研究. 仪器仪表学报, 2019, 40(2): 75-81.
|
23. |
Valeriani D, Poli R, Cinel C. Enhancement of group perception via a collaborative brain-computer interface. IEEE Trans Biomed Eng, 2016, 64(6): 1238-1248.
|
24. |
Kurvers R H J M, Herzog S M, Hertwig R, et al. Boosting medical diagnostics by pooling independent judgments. Proceedings of the National Academy of Sciences, 2016, 113(31): 8777-8782.
|