1. |
Hoffmann U, Vesin J M, Ebrahimi T, et al. An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods, 2008, 167(1): 115-125.
|
2. |
Yu Y, Liu Y, Yin E, et al. An asynchronous hybrid spelling approach based on EEG-EOG signals for Chinese character input. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(6): 1292-1302.
|
3. |
Pan J, Xie Q, Qin P, et al. Prognosis for patients with cognitive motor dissociation identified by brain-computer interface. Brain, 2020, 143(4): 1177-1189.
|
4. |
Zuo C, Jin J, Yin E, et al. Novel hybrid brain-computer interface system based on motor imagery and P300. Cogn Neurodyn, 2020, 14(2): 253-265.
|
5. |
Jin J, Liu C, Daly I, et al. Bispectrum-based channel selection for motor imagery based brain-computer interfacing. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(10): 2153-2163.
|
6. |
Jin J, Li S, Daly I, et al. The study of generic model set for reducing calibration time in P300-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(1): 3-12.
|
7. |
Jin J, Chen Z, Xu R, et al. Developing a novel tactile P300 brain-computer interface with a cheeks-stim paradigm. IEEE Trans Biomed Eng, 2020, 67(9): 2585-2593.
|
8. |
Pfurtscheller G, Brunner C, Schlögl A, et al. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 2006, 31(1): 153–159.
|
9. |
Qiu Z, Allison B Z, Jin J, et al. Optimized motor imagery paradigm based on imagining Chinese characters writing movement. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(7): 1009-1017.
|
10. |
Xu M, Han J, Wang Y, et al. Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent P300 and SSVEP features. IEEE Trans Biomed Eng, 2020, 67(11): 3073-3082.
|
11. |
Xiao X, Xu M, Jin J, et al. Discriminative canonical pattern matching for single-trial classification of ERP components. IEEE Trans Biomed Eng, 2020, 67(8): 2266-2275.
|
12. |
Li F, Yi C, Liao Y, et al. Reconfiguration of brain network between resting-state and P300 task. IEEE Trans Cogn Dev Syst, 2020. DOI: 10.1109/TCDS.2020.2965135.
|
13. |
Yang Z, Guo D, Zhang Y, et al. Visual evoked response modulation occurs in a complementary manner under dynamic circuit framework. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(10): 2005-2014.
|
14. |
许敏鹏, 魏泽. 基于脑卒中后运动康复领域的运动想象的研究. 生物医学工程学杂志, 2020, 37(1): 169-173.
|
15. |
Byrd E M, Jablonski R J, Vance D E. Understanding anosognosia for hemiplegia after stroke. Rehabil Nurs, 2020, 45(1): 3-15.
|
16. |
Jin J, Xiao R, Daly I, et al. Internal feature selection method of CSP based on L1-Norm and Dempster-Shafer theory. IEEE Trans Neural Netw Learn Syst, 2020, 99: 1-12.
|
17. |
Zuo C, Miao Y, Wang X, et al. Temporal frequency joint sparse optimization and fuzzy fusion for motor imagery-based brain-computer interfaces. J Neurosci Methods, 2020, 340: 108725.
|
18. |
Cantillo-Negrete J, Carino-Escobar R I, Carrillo-Mora P, et al. Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients. J Healthc Eng, 2018, 2018: 1-10.
|
19. |
Yu Y, Liu Y, Jiang J, et al. An asynchronous control paradigm based on sequential motor imagery and its application in wheelchair navigation. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(12): 2367-2375.
|
20. |
Edelman B J, Meng J, Suma D, et al. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Sci Robot, 2019, 4(31): eaaw6844.
|
21. |
Carvalho R, Dias N, Cerqueira J J. Brain-machine interface of upper limb recovery in stroke patients rehabilitation: A systematic review. Physiother Res Int, 2019, 24(2): e1764.
|
22. |
Pichiorri F, Morone G, Petti M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol, 2015, 77(5): 851-865.
|
23. |
Marins T, Rodrigues E C, Bortolini T, et al. Structural and functional connectivity changes in response to short-term neurofeedback training with motor imagery. Neuroimage, 2019, 194: 283-290.
|
24. |
Blankertz B, Sannelli C, Halder S, et al. Neurophysiological predictor of SMR-based BCI performance. Neuroimage, 2010, 51(4): 1303-1309.
|
25. |
Yu Tianyou, Xiao Jun, Wang Fangyi, et al. Enhanced motor imagery training using a hybrid BCI with feedback. IEEE Trans Biomed Eng, 2015, 62(7): 1706-1717.
|
26. |
Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 2001, 89(7): 1123-1134.
|
27. |
Hwang H J, Kwon K, Im C H. Neurofeedback-based motor imagery training for brain-computer interface (BCI). J Neurosci Methods, 2009, 179(1): 150-156.
|
28. |
Xia B, Zhang Q, Xie H, et al. A neurofeedback training paradigm for motor imagery based brain-computer interface//The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane: QLD, 2012: 1-4.
|
29. |
Vourvopoulos A, Pardo O M, Lefebvre S, et al. Effects of a brain-computer interface with virtual reality (VR) neurofeedback: a pilot study in chronic stroke patients. Front Hum Neurosci, 2019, 13: 210.
|
30. |
Abdalsalam E, Yusoff M Z, Malik A, et al. Modulation of sensorimotor rhythms for brain-computer interface using motor imagery with online feedback. Signal Image Video Process, 2018, 12(3): 557-564.
|
31. |
Neuper C, Scherer R, Reiner M, et al. Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cogn Brain Res, 2005, 25(3): 668-677.
|
32. |
Gibson R M, Chennu S, Owen A M, et al. Complexity and familiarity enhance single-trial detectability of imagined movements with electroencephalography. Clin Neurophysiol, 2014, 125(8): 1556-1567.
|
33. |
Park S H, Lee D, Lee S G. Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(2): 498-505.
|
34. |
Qi Feifei, Wu Wei, Yu Zhuliang, et al. Spatiotemporal-filtering-based channel selection for single-trial EEG classification. IEEE Trans Cybern, 2020, 51(2): 558-567.
|
35. |
Feng J, Yin E, Jin J, et al. Towards correlation-based time window selection method for motor imagery BCIs. Neural Netw, 2018, 102: 87-95.
|
36. |
Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng, 2018, 15(3): 031005.
|
37. |
Kuhtz-Buschbeck J P, Mahnkopf C, Holzknecht C, et al. Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. Eur J Neurosci, 2003, 18(12): 3375-3387.
|
38. |
Holper L, Wolf M. Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study. J Neuroeng Rehabil, 2011, 8(1): 34.
|
39. |
Roosink M, Zijdewind I. Corticospinal excitability during observation and imagery of simple and complex hand tasks: implications for motor rehabilitation. Behav Brain Res, 2010, 213(1): 35-41.
|
40. |
Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm, 2007, 114(10): 1265-1278.
|