- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R.China;
Atherosclerosis is a complex and multi-factorial pathophysiological process. Researches over the past decades have shown that the development of atherosclerotic vulnerable plaque is closely related to its components, morphology, and stress status. Biomechanical models have been developed by combining with medical imaging, biological experiments, and mechanical analysis, to study and analyze the biomechanical factors related to plaque vulnerability. Numerical simulation could quantify the dynamic changes of the microenvironment within the plaque, providing a method to represent the distribution of cellular and acellular components within the plaque microenvironment and to explore the interaction of lipid deposition, inflammation, angiogenesis, and other processes. Studying the pathological mechanism of plaque development would improve our understanding of cardiovascular disease and assist non-invasive inspection and early diagnosis of vulnerable plaques. The biomechanical models and numerical methods may serve as a theoretical support for designing and optimizing treatment strategies for vulnerable atherosclerosis.
Citation: LIU Mengchen, PAN Jichao, CAI Yan, LI Zhiyong. Biomechanical models and numerical studies of atherosclerotic plaque. Journal of Biomedical Engineering, 2020, 37(6): 948-955. doi: 10.7507/1001-5515.202008038 Copy
1. | Bentzon J F, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture. Circ Res, 2014, 114(12): 1852-1866. |
2. | 严金川. 脆性斑块的基础与临床. 北京: 人民卫生出版社, 2015. |
3. | Stary H. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation, 1995, 15(9): 1512-1531. |
4. | Friedman M, van den Bovenkamp G J. The pathogenesis of a coronary thrombus. Am J Pathol, 1966, 48(1): 19-44. |
5. | Davies M J, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med, 1984, 310(18): 1137-1140. |
6. | Falk E, Shah P K, Fuster V. Coronary plaque disruption. Circulation, 1995, 92(3): 657-671. |
7. | Finn A V, Nakano M, Narula J, et al. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol, 2010, 30(7): 1282-1292. |
8. | Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 2003, 108(14): 1664-1672. |
9. | Saba L, Anzidei M, Marincola B C, et al. Imaging of the carotid artery vulnerable plaque. Cardiovasc Intervent Radiol, 2014, 37(3): 572-585. |
10. | Ibragimov A, Mcneal C J, Ritter L R, et al. A mathematical model of atherogenesis as an inflammatory response. Math Med Biol, 2005, 22(4): 305-333. |
11. | Burke A P, Farb A, Malcom G T, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med, 1997, 336(18): 1276-1282. |
12. | Zhao X Q, Kerwin W S. Utilizing imaging tools in lipidology: examining the potential of MRI for monitoring cholesterol therapy. Clin Lipidol, 2012, 7(3): 329-343. |
13. | Rusanov S E. The affection of the disturbance of the hydrodynamics of blood in case of stress on pathological increase of level of low density lipoproteins in blood. Med Hypotheses, 2017, 106: 61-70. |
14. | Sluimer J C, Kolodgie F D, Bijnens A P, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol, 2009, 53(17): 1517-1527. |
15. | Sueishi K, Yonemitsu Y, Nakagawa K, et al. Atherosclerosis and angiogenesis. Its pathophysiological significance in humans as well as in an animal model induced by the gene transfer of vascular endothelial growth factor. Ann N Y Acad Sci, 1997, 811: 311-322; 322-324. |
16. | Moreno P R, Purushothaman K R, Sirol M, et al. Neovascularization in human atherosclerosis. Circulation, 2006, 113(18): 2245-2252. |
17. | de Vries M R, Quax P H. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr Opin Lipidol, 2016, 27(5): 499-506. |
18. | Xu J, Lu X, Shi G P. Vasa vasorum in atherosclerosis and clinical significance. Int J Mol Sci, 2015, 16(5): 11574-11608. |
19. | van der Veken B, Guido R M, Wim M. Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis. Expert Opin Ther Targets, 2016, 20(10): 1247-1257. |
20. | Plank M J, Wall D J, David T. The role of endothelial calcium and nitric oxide in the localisation of atherosclerosis. Math Biosci, 2007, 207(1): 26-39. |
21. | Cilla M, Peña E, Martínez M A. Mathematical modelling of atheroma plaque formation and development in coronary arteries. J R Soc Interface, 2014, 11(90): 20130866. |
22. | Bulelzai M, Dubbeldam J, Meijer H. Bifurcation analysis of a model for atherosclerotic plaque evolution. Physica D, 2014, 278-279: 31-43. |
23. | Ougrinovskaia A, Thompson R S, Myerscough M R. An ODE model of early stages of atherosclerosis: mechanisms of the inflammatory response. Bull Math Biol, 2010, 72(6): 1534-1561. |
24. | Cohen A, Myerscough M R, Thompson R S. Athero-protective effects of high density lipoproteins (HDL): an ODE model of the early stages of atherosclerosis. Bull Math Biol, 2014, 76(5): 1117-1142. |
25. | Bulelzai M, Dubbeldam J L. Long time evolution of atherosclerotic plaques. J Theor Biol, 2012, 297: 1-10. |
26. | Chung S, Vafai K. Low-density lipoprotein transport within a multi-layered arterial wall--effect of the atherosclerotic plaque/stenosis. J Biomech, 2013, 46(3): 574-585. |
27. | Siogkas P, Sakellarios A, Exarchos T P, et al. Multiscale-patient-specific artery and atherogenesis models. IEEE Trans Biomed Eng, 2011, 58(12): 3464-3468. |
28. | Khatib N E, Génieys S, Volpert V. Atherosclerosis initiation modeled as an inflammatory process. Math Model Nat Phenom, 2007, 2(2): 126-141. |
29. | Zohdi T I, Holzapfel G A, Berger S A. A phenomenological model for atherosclerotic plaque growth and rupture. J Theor Biol, 2004, 227(3): 437-443. |
30. | Vincent C, Gabriel H J, Nicolas M, et al. Mathematical and numerical modeling of early atherosclerotic lesions. Esaim Proceedings, 2010, 30: 1-14. |
31. | Hao W, Friedman A. The LDL-HDL profile determines the risk of atherosclerosis: a mathematical model. PLoS One, 2014, 9(3): e90497. |
32. | Friedman A, Hao W. A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors. Bull Math Biol, 2015, 77(5): 758-781. |
33. | Direnzo D, Owens G K, Leeper N J. “attack of the clones”: commonalities between cancer and atherosclerosis. Circ Res, 2017, 120(4): 624-626. |
34. | Meijers W C, de Boer R A. Common risk factors for heart failure and cancer. Cardiovasc Res, 2019, 115(5): 844-853. |
35. | Camaré C, Pucelle M, Nègre-Salvayre A, et al. Angiogenesis in the atherosclerotic plaque. Redox Biol, 2017, 12: 18-34. |
36. | 李玉林, 高绪兰, 于洪藻, 等. 肿瘤微血管及其对血管活性物质的反应性--组织血流测定和病理形态学研究. 中华肿瘤杂志, 1994(1): 3-6. |
37. | Araujo R P, Mcelwain D L. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol, 2004, 66(5): 1039-1091. |
38. | Anderson A, Chaplain M. A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl Math Lett, 1998, 11(3): 109-114. |
39. | Orme M E, Chaplain M A. A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J Math Appl Med Biol, 1996, 13(2): 73-98. |
40. | Orme M E, Chaplain M A. Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J Math Appl Med Biol, 1997, 14(3): 189-205. |
41. | Gevertz J L, Torquato S. Modeling the effects of vasculature evolution on early brain tumor growth. J Theor Biol, 2006, 243(4): 517-531. |
42. | Markus M, Böhm D, Schmick M. Simulation of vessel morphogenesis using cellular automata. Math Biosci, 1999, 156(1/2): 191-206. |
43. | Bartha K, Rieger H. Vascular network remodeling via vessel cooption, regression and growth in tumors. J Theor Biol, 2006, 241(4): 903-918. |
44. | Bauer A L, Jackson T L, JIANG Y. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J, 2007, 92(9): 3105-3121. |
45. | Addison-Smith B, Mcelwain D L, Maini P K. A simple mechanistic model of sprout spacing in tumour-associated angiogenesis. J Theor Biol, 2008, 250(1): 1-15. |
46. | Anderson A, Chaplain M. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol, 1998, 60(5): 857-899. |
47. | Alarcón T, Byrne H M, Maini P K. A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol, 2003, 225(2): 257-274. |
48. | Owen M R, Alarcón T, Maini P K, et al. Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol, 2009, 58(4/5): 689-721. |
49. | Perfahl H, Byrne H M, Chen T, et al. Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS One, 2011, 6(4): e14790. |
50. | Huang X, Yang C, Zheng J, et al. Higher critical plaque wall stress in patients who died of coronary artery disease compared with those who died of other causes: a 3D FSI study based on ex vivo MRI of coronary plaques. J Biomech, 2014, 47(2): 432-437. |
51. | Tang D, Teng Z, Canton G, et al. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study. Stroke, 2009, 40(10): 3258-3263. |
52. | Canton G, Hippe D S, SUN J, et al. Characterization of distensibility, plaque burden, and composition of the atherosclerotic carotid artery using magnetic resonance imaging. Med Phys, 2012, 39(10): 6247-6253. |
53. | Yang C, Tang D, Atluri S. Patient-Specific carotid plaque progression simulation using 3D meshless generalized finite difference models with fluid-structure interactions based on serial in vivo MRI data. Comput Model Eng Sci, 2011, 72(1): 53-77. |
54. | Li Z Y, Taviani V, Tang T, et al. The hemodynamic effects of in-tandem carotid artery stenosis: implications for carotid endarterectomy. J Stroke Cerebrovasc Dis, 2010, 19(2): 138-145. |
55. | Li Z Y, Tan F P, Soloperto G, et al. Flow pattern analysis in a highly stenotic patient-specific carotid bifurcation model using a turbulence model. Comput Methods Biomech Biomed Engin, 2015, 18(10): 1099-1107. |
56. | Tang Dalin, Li Z Y, Gijsen F, et al. Cardiovascular diseases and vulnerable plaques: data, modeling, predictions and clinical applications. Biomed Eng Online, 2015, 14(Suppl 1): S1. |
57. | Toussaint J F, Southern J F, Kantor H L, et al. Behavior of atherosclerotic plaque components after in vitro angioplasty and atherectomy studied by high field MR imaging. Magn Reson Imaging, 1998, 16(2): 175-183. |
58. | Gasser T C, Holzapfel G A. Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann Biomed Eng, 2007, 35(5): 711-723. |
59. | 苏海军, 张梅, 张运. 动脉粥样硬化斑块失稳破裂的力学模型. 中国科学 G 辑, 2004, 34(2): 192-202. |
60. | 马宁. 动脉粥样硬化早期斑块破裂的力学失稳模型研究. 济南: 山东大学, 2014. |
61. | Li X, Liu X, Zhang P, et al. Numerical simulation of haemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness. J R Soc Interface, 2017, 14(129): 20170140. |
62. | Wang S, Tokgoz A, Huang Y, et al. Bayesian inference-based estimation of normal aortic, aneurysmal and atherosclerotic tissue mechanical properties: from material testing, modeling and histology. IEEE Trans Biomed Eng, 2019, 66(8): 2269-2278. |
63. | Costopoulos C, Maehara A, Huang Y, et al. Heterogeneity of plaque structural stress is increased in plaques leading to MACE. JACC Cardiovasc Imaging, 2020, 13(5): 1206-1218. |
64. | Costopoulos C, Timmins L H, HUANG Y, et al. Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. Eur Heart J, 2019, 40(18): 1411-1422. |
65. | Trivedi R A, U-King-Im J M, Graves M J, et al. Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. Eur J Vasc Endovasc Surg, 2004, 28(2): 207-213. |
66. | U-King-Im J M, Trivedi R A, Cross J, et al. Conventional digital subtraction X-ray angiography versus magnetic resonance angiography in the evaluation of carotid disease:patient satisfaction and preferences. Clin Radiol, 2004, 59(4): 358-363. |
67. | U-King-Im J M, Trivedi R A, Graves M J, et al. Contrast-enhanced MR angiography for carotid disease: diagnostic and potential clinical impact. Neurology, 2004, 62(8): 1282-1290. |
68. | U-King-Im J M, Trivedi R A, Sala E, et al. Evaluation of carotid stenosis with axial high-resolution black-blood MR imaging. Eur Radiol, 2004, 14(7): 1154-1161. |
69. | U-King-Im J M, Trivedi R A, Cross J, et al. Measuring carotid stenosis on contrast-enhanced magnetic resonance angiography:diagnostic performance and reproducibility of 3 different methods. Stroke, 2004, 35(9): 2083-2088. |
70. | Li Zhiyong, Howarth S, Trivedi R A, et al. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J Biomech, 2006, 39(14): 2611-2622. |
71. | Li Z Y, Howarth S P, Tang T, et al. Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J Vasc Surg, 2007, 45(4): 768-775. |
72. | Pei X, Wu B, Tang T Y, et al. Fatigue crack growth under pulsatile pressure and plaque rupture. JACC Cardiovasc Imaging, 2014, 7(7): 738-740. |
73. | Pei X, Wu B, Li Z Y. Fatigue crack propagation analysis of plaque rupture. J Biomech Eng, 2013, 135(10): 101003-101009. |
74. | Paritala P K, Yarlagadda P K, Wang Jiaqiu, et al. Numerical investigation of atherosclerotic plaque rupture using optical coherence tomography imaging and XFEM. Eng Fract Mech, 2018, 204: 531-541. |
75. | Lendon C L, Briggs A D, Born G R, et al. Mechanical testing of connective tissue in the search for determinants of atherosclerotic plaque cap rupture. Biochem Soc Trans, 1988, 16(6): 1032-1033. |
76. | Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J, 1983, 50(2): 127-134. |
77. | Vanderwal A C, Becker A E, Vanderloos C M, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation, 1994, 89(1): 36-44. |
78. | 王洪建. 基于 IVUS 冠状动脉斑块增长数据的二维/三维生物力学模型分析. 南京: 东南大学, 2015. |
79. | Wang J, Paritala P K, Mendieta J B, et al. Optical coherence tomography-based patient-specific coronary artery Reconstruction and fluid-structure interaction simulation. Biomech Model Mechanobiol, 2020, 19(1): 7-20. |
80. | Mendieta J B, Fontanarosa D, Wang J, et al. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech Model Mechanobiol, 2020, 19(5): 1477-1490. |
81. | Li Z Y, Howarth S S, Tang T, et al. How critical is fibrous cap thickness to carotid plaque stability?. Stroke, 2006, 37(5): 1195-1199. |
82. | Li Z Y, Howarth S, Tang T, et al. Does Calcium deposition play a role in the stability of atheroma? Location May be the key. Cerebrovasc Dis, 2007, 24(5): 452-459. |
83. | Li Z Y, Howarth S, U-King-Im J, et al. Atheroma: is calcium important or not? a modelling study of stress within the atheromatous fibrous cap in relation to position and size of calcium deposits. Conf Proc IEEE Eng Med Biol Soc, 2005, 3: 2236-2239. |
84. | Tang T Y, Howarth S P, LI Z y, et al. Correlation of carotid atheromatous plaque inflammation with biomechanical stress: utility of USPIO enhanced MR imaging and finite element analysis. Atherosclerosis, 2008, 196(2): 879-887. |
85. | Barrett S, Sutcliffe M, Howarth S, et al. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J Biomech, 2009, 42(11): 1650-1655. |
86. | Paritala P K, Yarlagadda P, Kansky R, et al. Stress-Relaxation and cyclic behavior of human carotid plaque tissue. Front Bioeng Biotechnol, 2020, 8: 60. |
87. | Guo M Y, Cai Y, Yao X K, et al. Mathematical modeling of atherosclerotic plaque destabilization: role of neovascularization and intraplaque hemorrhage. J Theor Biol, 2018, 450: 53-65. |
88. | Guo M, Cai Y, He C L, et al. Coupled modeling of lipid deposition, inflammatory response and intraplaque angiogenesis in atherosclerotic plaque. Ann Biomed Eng, 2019, 47(2): 439-452. |
89. | 王贵学. 切应力变化与动脉粥样硬化斑块的形成和破裂. 中国动脉硬化杂志, 2009, 17(8): 625-628. |
- 1. Bentzon J F, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture. Circ Res, 2014, 114(12): 1852-1866.
- 2. 严金川. 脆性斑块的基础与临床. 北京: 人民卫生出版社, 2015.
- 3. Stary H. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation, 1995, 15(9): 1512-1531.
- 4. Friedman M, van den Bovenkamp G J. The pathogenesis of a coronary thrombus. Am J Pathol, 1966, 48(1): 19-44.
- 5. Davies M J, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med, 1984, 310(18): 1137-1140.
- 6. Falk E, Shah P K, Fuster V. Coronary plaque disruption. Circulation, 1995, 92(3): 657-671.
- 7. Finn A V, Nakano M, Narula J, et al. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol, 2010, 30(7): 1282-1292.
- 8. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 2003, 108(14): 1664-1672.
- 9. Saba L, Anzidei M, Marincola B C, et al. Imaging of the carotid artery vulnerable plaque. Cardiovasc Intervent Radiol, 2014, 37(3): 572-585.
- 10. Ibragimov A, Mcneal C J, Ritter L R, et al. A mathematical model of atherogenesis as an inflammatory response. Math Med Biol, 2005, 22(4): 305-333.
- 11. Burke A P, Farb A, Malcom G T, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med, 1997, 336(18): 1276-1282.
- 12. Zhao X Q, Kerwin W S. Utilizing imaging tools in lipidology: examining the potential of MRI for monitoring cholesterol therapy. Clin Lipidol, 2012, 7(3): 329-343.
- 13. Rusanov S E. The affection of the disturbance of the hydrodynamics of blood in case of stress on pathological increase of level of low density lipoproteins in blood. Med Hypotheses, 2017, 106: 61-70.
- 14. Sluimer J C, Kolodgie F D, Bijnens A P, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol, 2009, 53(17): 1517-1527.
- 15. Sueishi K, Yonemitsu Y, Nakagawa K, et al. Atherosclerosis and angiogenesis. Its pathophysiological significance in humans as well as in an animal model induced by the gene transfer of vascular endothelial growth factor. Ann N Y Acad Sci, 1997, 811: 311-322; 322-324.
- 16. Moreno P R, Purushothaman K R, Sirol M, et al. Neovascularization in human atherosclerosis. Circulation, 2006, 113(18): 2245-2252.
- 17. de Vries M R, Quax P H. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr Opin Lipidol, 2016, 27(5): 499-506.
- 18. Xu J, Lu X, Shi G P. Vasa vasorum in atherosclerosis and clinical significance. Int J Mol Sci, 2015, 16(5): 11574-11608.
- 19. van der Veken B, Guido R M, Wim M. Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis. Expert Opin Ther Targets, 2016, 20(10): 1247-1257.
- 20. Plank M J, Wall D J, David T. The role of endothelial calcium and nitric oxide in the localisation of atherosclerosis. Math Biosci, 2007, 207(1): 26-39.
- 21. Cilla M, Peña E, Martínez M A. Mathematical modelling of atheroma plaque formation and development in coronary arteries. J R Soc Interface, 2014, 11(90): 20130866.
- 22. Bulelzai M, Dubbeldam J, Meijer H. Bifurcation analysis of a model for atherosclerotic plaque evolution. Physica D, 2014, 278-279: 31-43.
- 23. Ougrinovskaia A, Thompson R S, Myerscough M R. An ODE model of early stages of atherosclerosis: mechanisms of the inflammatory response. Bull Math Biol, 2010, 72(6): 1534-1561.
- 24. Cohen A, Myerscough M R, Thompson R S. Athero-protective effects of high density lipoproteins (HDL): an ODE model of the early stages of atherosclerosis. Bull Math Biol, 2014, 76(5): 1117-1142.
- 25. Bulelzai M, Dubbeldam J L. Long time evolution of atherosclerotic plaques. J Theor Biol, 2012, 297: 1-10.
- 26. Chung S, Vafai K. Low-density lipoprotein transport within a multi-layered arterial wall--effect of the atherosclerotic plaque/stenosis. J Biomech, 2013, 46(3): 574-585.
- 27. Siogkas P, Sakellarios A, Exarchos T P, et al. Multiscale-patient-specific artery and atherogenesis models. IEEE Trans Biomed Eng, 2011, 58(12): 3464-3468.
- 28. Khatib N E, Génieys S, Volpert V. Atherosclerosis initiation modeled as an inflammatory process. Math Model Nat Phenom, 2007, 2(2): 126-141.
- 29. Zohdi T I, Holzapfel G A, Berger S A. A phenomenological model for atherosclerotic plaque growth and rupture. J Theor Biol, 2004, 227(3): 437-443.
- 30. Vincent C, Gabriel H J, Nicolas M, et al. Mathematical and numerical modeling of early atherosclerotic lesions. Esaim Proceedings, 2010, 30: 1-14.
- 31. Hao W, Friedman A. The LDL-HDL profile determines the risk of atherosclerosis: a mathematical model. PLoS One, 2014, 9(3): e90497.
- 32. Friedman A, Hao W. A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors. Bull Math Biol, 2015, 77(5): 758-781.
- 33. Direnzo D, Owens G K, Leeper N J. “attack of the clones”: commonalities between cancer and atherosclerosis. Circ Res, 2017, 120(4): 624-626.
- 34. Meijers W C, de Boer R A. Common risk factors for heart failure and cancer. Cardiovasc Res, 2019, 115(5): 844-853.
- 35. Camaré C, Pucelle M, Nègre-Salvayre A, et al. Angiogenesis in the atherosclerotic plaque. Redox Biol, 2017, 12: 18-34.
- 36. 李玉林, 高绪兰, 于洪藻, 等. 肿瘤微血管及其对血管活性物质的反应性--组织血流测定和病理形态学研究. 中华肿瘤杂志, 1994(1): 3-6.
- 37. Araujo R P, Mcelwain D L. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol, 2004, 66(5): 1039-1091.
- 38. Anderson A, Chaplain M. A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl Math Lett, 1998, 11(3): 109-114.
- 39. Orme M E, Chaplain M A. A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J Math Appl Med Biol, 1996, 13(2): 73-98.
- 40. Orme M E, Chaplain M A. Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J Math Appl Med Biol, 1997, 14(3): 189-205.
- 41. Gevertz J L, Torquato S. Modeling the effects of vasculature evolution on early brain tumor growth. J Theor Biol, 2006, 243(4): 517-531.
- 42. Markus M, Böhm D, Schmick M. Simulation of vessel morphogenesis using cellular automata. Math Biosci, 1999, 156(1/2): 191-206.
- 43. Bartha K, Rieger H. Vascular network remodeling via vessel cooption, regression and growth in tumors. J Theor Biol, 2006, 241(4): 903-918.
- 44. Bauer A L, Jackson T L, JIANG Y. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J, 2007, 92(9): 3105-3121.
- 45. Addison-Smith B, Mcelwain D L, Maini P K. A simple mechanistic model of sprout spacing in tumour-associated angiogenesis. J Theor Biol, 2008, 250(1): 1-15.
- 46. Anderson A, Chaplain M. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol, 1998, 60(5): 857-899.
- 47. Alarcón T, Byrne H M, Maini P K. A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol, 2003, 225(2): 257-274.
- 48. Owen M R, Alarcón T, Maini P K, et al. Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol, 2009, 58(4/5): 689-721.
- 49. Perfahl H, Byrne H M, Chen T, et al. Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS One, 2011, 6(4): e14790.
- 50. Huang X, Yang C, Zheng J, et al. Higher critical plaque wall stress in patients who died of coronary artery disease compared with those who died of other causes: a 3D FSI study based on ex vivo MRI of coronary plaques. J Biomech, 2014, 47(2): 432-437.
- 51. Tang D, Teng Z, Canton G, et al. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study. Stroke, 2009, 40(10): 3258-3263.
- 52. Canton G, Hippe D S, SUN J, et al. Characterization of distensibility, plaque burden, and composition of the atherosclerotic carotid artery using magnetic resonance imaging. Med Phys, 2012, 39(10): 6247-6253.
- 53. Yang C, Tang D, Atluri S. Patient-Specific carotid plaque progression simulation using 3D meshless generalized finite difference models with fluid-structure interactions based on serial in vivo MRI data. Comput Model Eng Sci, 2011, 72(1): 53-77.
- 54. Li Z Y, Taviani V, Tang T, et al. The hemodynamic effects of in-tandem carotid artery stenosis: implications for carotid endarterectomy. J Stroke Cerebrovasc Dis, 2010, 19(2): 138-145.
- 55. Li Z Y, Tan F P, Soloperto G, et al. Flow pattern analysis in a highly stenotic patient-specific carotid bifurcation model using a turbulence model. Comput Methods Biomech Biomed Engin, 2015, 18(10): 1099-1107.
- 56. Tang Dalin, Li Z Y, Gijsen F, et al. Cardiovascular diseases and vulnerable plaques: data, modeling, predictions and clinical applications. Biomed Eng Online, 2015, 14(Suppl 1): S1.
- 57. Toussaint J F, Southern J F, Kantor H L, et al. Behavior of atherosclerotic plaque components after in vitro angioplasty and atherectomy studied by high field MR imaging. Magn Reson Imaging, 1998, 16(2): 175-183.
- 58. Gasser T C, Holzapfel G A. Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann Biomed Eng, 2007, 35(5): 711-723.
- 59. 苏海军, 张梅, 张运. 动脉粥样硬化斑块失稳破裂的力学模型. 中国科学 G 辑, 2004, 34(2): 192-202.
- 60. 马宁. 动脉粥样硬化早期斑块破裂的力学失稳模型研究. 济南: 山东大学, 2014.
- 61. Li X, Liu X, Zhang P, et al. Numerical simulation of haemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness. J R Soc Interface, 2017, 14(129): 20170140.
- 62. Wang S, Tokgoz A, Huang Y, et al. Bayesian inference-based estimation of normal aortic, aneurysmal and atherosclerotic tissue mechanical properties: from material testing, modeling and histology. IEEE Trans Biomed Eng, 2019, 66(8): 2269-2278.
- 63. Costopoulos C, Maehara A, Huang Y, et al. Heterogeneity of plaque structural stress is increased in plaques leading to MACE. JACC Cardiovasc Imaging, 2020, 13(5): 1206-1218.
- 64. Costopoulos C, Timmins L H, HUANG Y, et al. Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. Eur Heart J, 2019, 40(18): 1411-1422.
- 65. Trivedi R A, U-King-Im J M, Graves M J, et al. Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. Eur J Vasc Endovasc Surg, 2004, 28(2): 207-213.
- 66. U-King-Im J M, Trivedi R A, Cross J, et al. Conventional digital subtraction X-ray angiography versus magnetic resonance angiography in the evaluation of carotid disease:patient satisfaction and preferences. Clin Radiol, 2004, 59(4): 358-363.
- 67. U-King-Im J M, Trivedi R A, Graves M J, et al. Contrast-enhanced MR angiography for carotid disease: diagnostic and potential clinical impact. Neurology, 2004, 62(8): 1282-1290.
- 68. U-King-Im J M, Trivedi R A, Sala E, et al. Evaluation of carotid stenosis with axial high-resolution black-blood MR imaging. Eur Radiol, 2004, 14(7): 1154-1161.
- 69. U-King-Im J M, Trivedi R A, Cross J, et al. Measuring carotid stenosis on contrast-enhanced magnetic resonance angiography:diagnostic performance and reproducibility of 3 different methods. Stroke, 2004, 35(9): 2083-2088.
- 70. Li Zhiyong, Howarth S, Trivedi R A, et al. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J Biomech, 2006, 39(14): 2611-2622.
- 71. Li Z Y, Howarth S P, Tang T, et al. Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J Vasc Surg, 2007, 45(4): 768-775.
- 72. Pei X, Wu B, Tang T Y, et al. Fatigue crack growth under pulsatile pressure and plaque rupture. JACC Cardiovasc Imaging, 2014, 7(7): 738-740.
- 73. Pei X, Wu B, Li Z Y. Fatigue crack propagation analysis of plaque rupture. J Biomech Eng, 2013, 135(10): 101003-101009.
- 74. Paritala P K, Yarlagadda P K, Wang Jiaqiu, et al. Numerical investigation of atherosclerotic plaque rupture using optical coherence tomography imaging and XFEM. Eng Fract Mech, 2018, 204: 531-541.
- 75. Lendon C L, Briggs A D, Born G R, et al. Mechanical testing of connective tissue in the search for determinants of atherosclerotic plaque cap rupture. Biochem Soc Trans, 1988, 16(6): 1032-1033.
- 76. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J, 1983, 50(2): 127-134.
- 77. Vanderwal A C, Becker A E, Vanderloos C M, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation, 1994, 89(1): 36-44.
- 78. 王洪建. 基于 IVUS 冠状动脉斑块增长数据的二维/三维生物力学模型分析. 南京: 东南大学, 2015.
- 79. Wang J, Paritala P K, Mendieta J B, et al. Optical coherence tomography-based patient-specific coronary artery Reconstruction and fluid-structure interaction simulation. Biomech Model Mechanobiol, 2020, 19(1): 7-20.
- 80. Mendieta J B, Fontanarosa D, Wang J, et al. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech Model Mechanobiol, 2020, 19(5): 1477-1490.
- 81. Li Z Y, Howarth S S, Tang T, et al. How critical is fibrous cap thickness to carotid plaque stability?. Stroke, 2006, 37(5): 1195-1199.
- 82. Li Z Y, Howarth S, Tang T, et al. Does Calcium deposition play a role in the stability of atheroma? Location May be the key. Cerebrovasc Dis, 2007, 24(5): 452-459.
- 83. Li Z Y, Howarth S, U-King-Im J, et al. Atheroma: is calcium important or not? a modelling study of stress within the atheromatous fibrous cap in relation to position and size of calcium deposits. Conf Proc IEEE Eng Med Biol Soc, 2005, 3: 2236-2239.
- 84. Tang T Y, Howarth S P, LI Z y, et al. Correlation of carotid atheromatous plaque inflammation with biomechanical stress: utility of USPIO enhanced MR imaging and finite element analysis. Atherosclerosis, 2008, 196(2): 879-887.
- 85. Barrett S, Sutcliffe M, Howarth S, et al. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J Biomech, 2009, 42(11): 1650-1655.
- 86. Paritala P K, Yarlagadda P, Kansky R, et al. Stress-Relaxation and cyclic behavior of human carotid plaque tissue. Front Bioeng Biotechnol, 2020, 8: 60.
- 87. Guo M Y, Cai Y, Yao X K, et al. Mathematical modeling of atherosclerotic plaque destabilization: role of neovascularization and intraplaque hemorrhage. J Theor Biol, 2018, 450: 53-65.
- 88. Guo M, Cai Y, He C L, et al. Coupled modeling of lipid deposition, inflammatory response and intraplaque angiogenesis in atherosclerotic plaque. Ann Biomed Eng, 2019, 47(2): 439-452.
- 89. 王贵学. 切应力变化与动脉粥样硬化斑块的形成和破裂. 中国动脉硬化杂志, 2009, 17(8): 625-628.