1. |
韩巍, 刘文勇, 王军强, 等. 计算机辅助股骨干骨折复位技术研究进展. 北京生物医学工程, 2013, 32(1): 101-105.
|
2. |
曹延祥, 赵燕鹏, 娄盛涵, 等. 计算机辅助股骨干骨折治疗研究进展. 中国数字医学, 2017, 12(2): 24-27, 33.
|
3. |
孙小刚. 股骨干骨折复位辅助机器人系统研制. 南京: 东南大学, 2016.
|
4. |
Li Changsheng, Wang Tianmiao, Hu Lei, et al. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction. Proc Inst Mech Eng H, 2015, 229(9): 629-637.
|
5. |
Abedinnasab M H, Farahmand F, Gallardo-Alvarado J. The wide-open three-legged parallel robot for long-bone fracture reduction. J Mech Robot, 2017, 9(1): 015001.
|
6. |
Kim W Y, Ko S Y. Hands-on robot-assisted facture reduction system guided by a linear guidance constraints controller using a pre-operatively planned goal pose. Int J Med Robot Comput Assist Surg, 2019, 15(2): e1967.
|
7. |
Buschbaum J, Fremd R, Pohlemann T, et al. Computer-assisted fracture reduction: A new approach for repositioning femoral fractures and planning reduction paths. Int J Comput Assist Radiol Surg, 2015, 10(2): 149-159.
|
8. |
Buschbaum J, Fremd R, Pohlemann T, et al. Introduction of a computer-based method for automated planning of reduction paths under consideration of simulated muscular forces. Int J Comput Assist Radiol Surg, 2017, 12(8): 1369-1381.
|
9. |
耿慧玉. 人体骨骼肌生物力学建模与仿真. 哈尔滨: 哈尔滨理工大学, 2019.
|
10. |
Hill A V. The heat of shortening and the dynamic constants of muscle. Proc Roy Soc B, 1938, 126(843): 136-195.
|
11. |
Zajac F E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 1989, 17(4): 359-411.
|
12. |
Günther M, Schmitt S, Wank V. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biol Cyber, 2007, 97(1): 63-79.
|
13. |
Millard M, Uchida T, Seth A, et al. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J Biomech Eng, 2013, 135(2): 021005.
|
14. |
Haeufle D F B, Günther M, Bayer A, et al. Hill-type muscle model with serial damping and eccentric force-velocity relation. J Biomech, 2014, 47(6): 1531-1536.
|
15. |
Van Soest A J, Bobbert M F. The contribution of muscle properties in the control of explosive movements. Biol Cyber, 1993, 69(3): 195-204.
|
16. |
Mörl F, Siebert T, Schmitt S, et al. Electro-mechanical delay in Hill-type muscle models. J Mech Med Biol, 2012, 12(5): 1250085.
|
17. |
刘瑞东, 李庆. 激活后增强效应的生理机制、影响因素与应用策略. 成都体育学院学报, 2017, 43(6): 58-64.
|
18. |
Folland J P, Williams A G. Morphological and neurological contributions to increased strength. Sports Med, 2007, 37(2): 145-168.
|
19. |
Graham A E, Xie S Q, Aw K C, et al. Bone-muscle interaction of the fractured femur. Orthop Res, 2008, 26(8): 1159-1165.
|
20. |
Joung S, Shikh S S, Kobayashi E, et al. Musculoskeletal model of hip fracture for safety assurance of reduction path in robot-assisted fracture reduction// 5th Kuala Lumpur International Conference on Biomedical Engineering. Berlin: Heidelberg, 2011: 116-120.
|
21. |
Li Changsheng, Wang Tianmiao, Hu Lei, et al. Robot-musculoskeletal dynamic biomechanical model in robot-assisted diaphyseal fracture reduction. Biomed Mater Eng, 2015, 26(S1): 365-374.
|
22. |
朱庆. 柔性驱动股骨干骨折复位机器人系统研究. 南京: 东南大学, 2018.
|
23. |
安贤俊. 人体肌肉组织的生物力学建模及其有限元仿真. 哈尔滨: 哈尔滨理工大学, 2015.
|
24. |
Warwic R, Willems P L. Gray's Anatomy. 35th Ed. Edinburgh: Longman Group Ltd, 1973.
|
25. |
李永胜, 陈维毅. 单羽状骨骼肌平面模型的修正. 医用生物力学, 2007, 22(3): 277-281.
|
26. |
Arnold E M, Ward S R, Lieber R L, et al. A model of the lower limb for analysis of human movement. Ann Biomed Eng, 2010, 38(2): 269-279.
|
27. |
高士濂. 实用解剖学图谱下肢分册. 上海: 上海科学技术出版社, 2004: 63-67.
|
28. |
单大卯. 人体下肢肌肉功能模型及其应用的研究. 上海: 上海体育学院, 2003.
|
29. |
程利亚. 骨创伤复位机器人设计及复位路径规划. 上海: 上海大学, 2019.
|
30. |
Zhu Qing, Liang Bin, Wang Xingsong, et al. Force–torque intraoperative measurements for femoral shaft fracture reduction. Comput Assist Surg, 2016, 21(sup1): 37-44.
|