1. |
Kuthi L, Jenei A, Hajdu A, et al. Prognostic factors for renal cell carcinoma subtypes diagnosed according to the 2016 WHO renal tumor classification: a study involving 928 patients. Pathol Oncol Res, 2017, 23(3): 689-698.
|
2. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin, 2018, 68(6): 394-424.
|
3. |
Kutikov A, Uzzo R G. The R. E. N. A. L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol, 2009, 182(3): 844-853.
|
4. |
Song L, Geoffrey K, Kaijian H. Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation. Expert Syst Appl, 2020, 145: 113131.
|
5. |
Li X, Chen H, Qi X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging, 2018, 37(12): 2663-2674.
|
6. |
Jin Q, Meng Z, Sun C, et al. RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans. Front Bioeng Biotechnol, 2020, 8: 605132.
|
7. |
Seo H, Huang C, Bassenne M, et al. Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images. IEEE Trans Med Imaging, 2019, 39(5): 1316-1325.
|
8. |
Wang G, Li W, Ourselin S, et al. Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front Comput Neurosci, 2019, 13: 56.
|
9. |
Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with deep neural networks. Med Image Anal, 2017, 35: 18-31.
|
10. |
Liu C, Ding W, Li L, et al. Brain tumor segmentation network using attention-based fusion and spatial relationship constraint. arXiv, 2020: 2010.156472.
|
11. |
李肃义, 唐世杰, 李凤, 等. 基于深度学习的生物医学数据分析进展. 生物医学工程学杂志, 2020, 37(2): 349-357.
|
12. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell, 2015, 39(4): 640-651.
|
13. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich: Medical Image Computing and Computer Assisted Intervention Society, 2015: 234-241.
|
14. |
Zhang J, Jin Y, Xu J, et al. MDU-Net: Multi-scale densely connected U-Net for biomedical image segmentation. arXiv, 2018: 1812.00352.
|
15. |
Zhang Z, Wu C, Coleman S, et al. DENSE-INception U-net for medical image segmentation. Comput Meth Programs Biomed, 2020, 192: 105395.
|
16. |
Ibtehaz N, Rahman M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw, 2020, 121: 74-87.
|
17. |
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation// 19th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Athens: Medical Image Computing and Computer Assisted Intervention Society, 2016: 424-432.
|
18. |
Zhou Z, Siddiquee M, Tajbakhsh N, et al. UNet++: a nested U-Net architecture for medical image segmentation// 4th Deep Learning in Medical Image Analysis (DLMIA). Granada: International Workshop on Deep Learning in Medical Image Analysis, 2018: 3-11.
|
19. |
Huang H, Lin L, Tong R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation// IEEE International Conference on Acoustics, Speech, and Signal Processing. Barcelona: IEEE, 2020: 1055-1059.
|
20. |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network// 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 6230-6239.
|
21. |
Yang G, Li G, Pan T, et al. Automatic segmentation of kidney and renal tumor in CT images based on 3D fully convolutional neural network with pyramid pooling module// 24th International Conference on Pattern Recognition (ICPR). Beijing: IEEE, 2018: 3790-3795.
|
22. |
Chen L, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation// 15th European Conference on Computer Vision (ECCV). Munich: ECCV, 2018: 833-851.
|
23. |
Isensee F, Maier-Hein K J A. An attempt at beating the 3D U-Net. arXiv, 2019: 1908.02182.
|
24. |
Buslaev A, Parinov A, Khvedchenya E, et al. Albumentations: fast and flexible image augmentations. arXiv, 2018: 1809.06839.
|
25. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2016: 770-778.
|
26. |
Heller N, Sathianathen N, Kalapara A, et al. The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv, 2019: 1904.00445.
|
27. |
Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library// 33rd Conference on Neural Information Processing Systems (NeurIPS). Vancouver: Neural Information Processing Systems Foundation, 2019: 1-12.
|
28. |
Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks// 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 7132-7141.
|
29. |
Woo S, Park J, Lee J-Y, et al. Cbam: Convolutional block attention module// 15th European Conference on Computer Vision (ECCV). Munich: ECCV, 2018: 3-19.
|
30. |
Gsa B, Li X A, Yang C B, et al. Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Med Image Anal, 2021, 70: 101979.
|