1. |
Prakkamakul S, Yoo A J. ASPECTS CT in acute ischemia: review of current data. Top Magn Reson Imaging, 2017, 26(3): 103-112.
|
2. |
Runde D. Calculated decisions: Alberta stroke program early CT score (ASPECTS). Emerg Med Pract, 2019, 21(6): CD6-CD7.
|
3. |
Raza S A, Barreira C M, Rodrigues G M, et al. Prognostic importance of CT ASPECTS and CT perfusion measures of infarction in anterior emergent large vessel occlusions. J Neurointerv Surg, 2019, 11(7): 670-674.
|
4. |
Powers W J, Rabinstein A A, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke, 2019, 50(12): e344-e418.
|
5. |
杨安权. CT技术在评估急性缺血性脑卒中患者侧支循环中的应用效果观察. 影像研究与医学应用, 2020, 4(13): 102-103.
|
6. |
肖明霞. 磁共振成像技术在急性缺血性脑卒中患者中的应用效果分析. 中国医药指南, 2020, 18(18): 100-101.
|
7. |
Phan K, Saleh S, Dmytriw A A, et al. Influence of ASPECTS and endovascular thrombectomy in acute ischemic stroke: a meta-analysis. J Neurointerv Surg, 2019, 11(7): 664-669.
|
8. |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报, 2017, 40(6): 1229-1251.
|
9. |
俞益洲, 石德君, 马杰超, 等. 人工智能在医学影像分析中的应用进展. 中国医学影像技术, 2019, 35(12): 1808-1812.
|
10. |
Jadhav AP, Wechsler LR. Patient selection for stroke thrombectomy: is CT head good enough?. Neurology, 2016, 87(3): 242-243.
|
11. |
范茜君, 杨素君. CT灌注与CT造影对缺血性脑卒中的诊断价值. 医疗装备, 2020, 33(12): 5-6.
|
12. |
宋磊, 高波, 沈桂权, 等. FLAIR血管高信号和DWI在缺血性脑卒中的临床价值. 临床放射学杂志, 2019, 38(9): 1613-1618.
|
13. |
嵇碧莹, 徐运. 多模式CT对不同梗死部位的急性缺血性脑卒中的临床应用研究. 影像研究与医学应用, 2020, 4(13): 80-81.
|
14. |
Farzin B, Fahed R, Guilbert F, et al. Early CT changes in patients admitted for thrombectomy: intrarater and interrater agreement. Neurology, 2016, 87(3): 249-256.
|
15. |
Copen W A, Yoo A J, Rost N S, et al. In patients with suspected acute stroke, CT perfusion-based cerebral blood flow maps cannot substitute for DWI in measuring the ischemic core. PLoS One, 2017, 12(11): e0188891.
|
16. |
Asadi H, Dowling R, Yan B, et al. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS One, 2014, 9(2): e88225.
|
17. |
Anbumozhi S. Computer aided detection and diagnosis methodology for brain stroke using adaptive neuro fuzzy inference system classifier. Int J Imaging Syst Technol, 2020, 30(1): 196-202.
|
18. |
Mokin M, Primiani C T, Siddiqui A H, et al. ASPECTS (Alberta stroke program early CT score) measurement using Hounsfield unit values when selecting patients for stroke thrombectomy. Stroke, 2017, 48(6): 1574-1579.
|
19. |
Scheldeman L, Wouters A, Boutitie F, et al. Different mismatch concepts for magnetic resonance imaging-guided thrombolysis in unknown onset stroke. Ann Neurol, 2020, 87(6): 931-938.
|
20. |
Simonsen C Z, Madsen M H, Schmitz M L, et al. Sensitivity of diffusion- and perfusion-weighted imaging for diagnosing acute ischemic stroke is 97.5%. Stroke, 2015, 46(1): 98-101.
|
21. |
Brugnara G, Neuberger U, Mahmutoglu M, et al. Multimodal predictive modeling of endovascular treatment outcome for acute ischemic stroke using machine-learning. Stroke, 2020, 51(12): 3541-3551.
|
22. |
Thomalla G, Simonsen C Z, Boutitie F, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med, 2018, 379(7): 611-622.
|
23. |
Ho K C, Speier W, El-Saden S, et al. Classifying acute ischemic stroke onset time using deep imaging features. AMIA Annu Symp Proc, 2018, 2017: 892-901.
|
24. |
Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. Neuroimage Clin, 2017, 15: 633-643.
|
25. |
Nielsen A, Hansen M B, Tietze A, et al. Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke, 2018, 49(6): 1394-1401.
|
26. |
Rondina J M, Filippone M, Girolami M, et al. Decoding post-stroke motor function from structural brain imaging. Neuroimage Clin, 2016, 12: 372-380.
|
27. |
Sung S M, Kang Y J, Cho H J, et al. Prediction of early neurological deterioration in acute minor ischemic stroke by machine learning algorithms. Clin Neurol Neurosurg, 2020, 195: 105892.
|
28. |
Barman A, Inam M E, Lee S, et al. Determining ischemic stroke from CT-angiography imaging using symmetry-sensitive convolutional networks//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE, 2019: 1873-1877.
|
29. |
Shaham U, R L R. Learning by coincidence: siamese networks and common variable learning. Pattern Recogn, 2018: 74.
|
30. |
Sheth S, Lopez-Rivera V, Barman A, et al. Machine learning-enabled automated determination of acute ischemic core from computed tomography angiography. Stroke, 2019, 50(11): 3093-3100.
|
31. |
Tang Y. Deep learning using linear support vector machines. arXiv: 1306.0239, 2015: 0239.
|
32. |
Nagel S, Wang X, Carcel C, et al. Clinical utility of electronic Alberta stroke program early computed tomography score software in the enchanted trial database. Stroke, 2018, 49(6): 1407-1411.
|
33. |
Herweh C, Ringleb P A, Rauch G, et al. Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing ct scans of acute ischemic stroke patients. Int J Stroke, 2016, 11(4): 438-445.
|
34. |
Albers G W, Wald M J, Mlynash M, et al. Automated calculation of Alberta stroke program early CT score: validation in patients with large hemispheric infarct. Stroke, 2019, 50(11): 3277-3279.
|
35. |
Maegerlein C, Fischer J, Mönch S, et al. Automated calculation of the Alberta stroke program early CT score: feasibility and reliability. Radiology, 2019, 291(1): 141-148.
|
36. |
Feng R, Badgeley M, Mocco J, et al. Deep learning guided stroke management: a review of clinical applications. J Neurointerv Surg, 2018, 10(4): 358-362.
|
37. |
Takahashi N, Lee Y, Tsai D Y, et al. An automated detection method for the MCA dot sign of acute stroke in unenhanced CT. Radiol Phys Technol, 2014, 7(1): 79-88.
|
38. |
Kamal H, Lopez V, Sheth S. Machine learning in acute ischemic stroke neuroimaging. Front Neurol, 2018, 9: 945.
|
39. |
Ferreti L A, Leitao C A, Teixeira B, et al. The use of e-ASPECTS in acute stroke care: validation of method performance compared to the performance of specialists. Arq Neuropsiquiatr, 2020, 78(12): 757-761.
|
40. |
Philpotts L E. Can computer-aided detection be detrimental to mammographic interpretation?. Radiology, 2009, 253(1): 17-22.
|
41. |
王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望. 自动化学报, 2017, 43(3): 321-332.
|
42. |
Jin C B, Kim H, Liu M, et al. Deep CT to MR synthesis using paired and unpaired data. Sensors (Basel), 2019, 19(10): 2361.
|