1. |
Gunes H, Schuller B, Pantic M, et al. Emotion representation, analysis and synthesis in continuous space: a survey//2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG 2011). Santa Barbara: IEEE, 2011: 827-834.
|
2. |
Alarcão S M, Fonseca M J. Emotions recognition using EEG signals: a survey. IEEE Trans Affect Comput, 2019, 10(3): 374-393.
|
3. |
Katsigiannis S, Ramzan N. DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J Biomed Health Inform, 2018, 22(1): 98-107.
|
4. |
Koelstra S, Mühl C, Soleymani M, et al. DEAP: a database for emotion analysis using physiological signals. IEEE Trans Affect Comput, 2012, 3(1): 18-31.
|
5. |
Zheng Weilong, Lu Baoliang. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Ment Dev, 2015, 7(3): 162-175.
|
6. |
Petrantonakis P C, Hadjileontiadis L J. Emotion recognition from EEG using higher order crossings. IEEE Trans Inf Technol Biomed, 2010, 14(2): 186-197.
|
7. |
Zheng Weilong, Zhu Jiayi, Lu Baoliang. Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans Affect Comput, 2019, 10(3): 417-429.
|
8. |
Cui Heng, Liu Aiping, Zhang Xu, et al. EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network. Knowledge-Based Systems, 2020, 205: 106243.
|
9. |
Zheng W L, Liu W, Lu Y, et al. EmotionMeter: a multimodal framework for recognizing human emotions. IEEE Trans Cybern, 2019, 49(3): 1110-1122.
|
10. |
Liu S, Wang X, Zhao L, et al. Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network. IEEE/ACM Trans Comput Biol Bioinform, 2020.
|
11. |
Liu Yongjin, Yu Minjing, Zhao Guozhen, et al. Real-time movie-induced discrete emotion recognition from EEG signals. IEEE Trans Affect Comput, 2018, 9(4): 550-562.
|
12. |
Li J, Qiu S, Shen Y Y, et al. Multisource transfer learning for cross-subject EEG emotion recognition. IEEE Trans Cybern, 2020, 50(7): 3281-3293.
|
13. |
Russell J A. A circumplex model of affect. J Pers Soc Psychol, 1980, 39(6): 1161-1178.
|
14. |
Jenke R, Peer A, Buss M. Feature extraction and selection for emotion recognition from EEG. IEEE Trans Affect Comput, 2014, 5(3): 327-339.
|
15. |
Shi Lichen, Jiao Yingying, Lu Baoliang. Differential entropy feature for EEG-based vigilance estimation//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE, 2013: 6627-6630.
|
16. |
Blankertz B, Dornhege G, Krauledat M, et al. The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage, 2007, 37(2): 539-550.
|
17. |
Gramfort A, Luessi M, Larson E, et al. MNE software for processing MEG and EEG data. Neuroimage, 2014, 86(1): 446-460.
|
18. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
|
19. |
Mühl C, Allison B, Nijholt A, et al. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain-Computer Interfaces, 2014, 1(2): 66-84.
|
20. |
Atkinson J, Campos D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Systems with Applications, 2016, 47(1): 35-41.
|
21. |
Mohammadi Z, Frounchi J, Amiri M. Wavelet-based emotion recognition system using EEG signal. Neural Computing and Applications, 2017, 28(8): 1985-1990.
|
22. |
Zhang Xiaowei, Hu Bin, Chen Jing, et al. Ontology-based context modeling for emotion recognition in an intelligent web. World Wide Web, 2013, 16(4): 497-513.
|