1. |
伏云发, 杨秋红, 徐宝磊, 等. 脑机接口原理与实践. 北京: 国防工业出版社, 2017.
|
2. |
Wolpaw J R, Wolpaw E W. Brain-computer interfaces: Principles and practice. Oxford: Oxford University Press, 2012.
|
3. |
伏云发, 郭衍龙, 张夏冰, 等. 脑机接口: 变革性的人机交互. 北京: 国防工业出版社, 2020.
|
4. |
Graimann B, Allison B, Pfurtscheller G. Brain-computer interfaces: Revolutionizing human-computer interaction. Berlin: Springer Publishing Company, 2013.
|
5. |
伏云发, 龚安民, 陈超, 等. 面向实用的脑-机接口: 缩小研究与实际应用之间的差距. 北京: 电子工业出版社, 2021.
|
6. |
Allison B Z, Dunne S, Leeb R, et al. Towards practical brain computer interfaces: Bridging the gap from research to real-world applications. Berlin: Springer Publishing Company, 2012.
|
7. |
许敏鹏, 魏泽, 明东. 基于脑卒中后运动康复领域的运动想象的研究. 生物医学工程学杂志, 2020, 37(1): 169-173.
|
8. |
徐宝国, 何小杭, 魏智唯, 等. 基于运动想象脑电的机器人连续控制系统研究. 仪器仪表学报, 2018, 39(9): 10-19.
|
9. |
Saduanov B, Tokmurzina D, Kunanbayev K, et al. Design and optimization of a real-time asynchronous BCI control strategy for robotic manipulator assistance// 2020 8th International Winter Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2020: 1-5.
|
10. |
Lee M H, Kwon O Y, Kim Y J, et al. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. GigaScience, 2019, 8(5): 1-16.
|
11. |
Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: A 10-year update. J Neural Eng, 2018, 15(3): 03155.
|
12. |
Fu R, Li W, Chen J, et al. Recognizing single-trial motor imagery EEG based on interpretable clustering method. Biome Signal Process Control, 2021, 63: 102171.
|
13. |
Al-Saegh A, Dawwd S A, Abdul-Jabbar J M. Deep learning for motor imagery EEG-based classification: A review. Biomed Signal Process Control, 2021, 63: 102172.
|
14. |
Ruyi F, Keng A K, Chai Q, et al. Assessment of the efficacy of EEG-based MI-BCI with visual feedback and EEG correlates of mental fatigue for upper-limb stroke rehabilitation. IEEE Trans Biomed Eng, 2020, 67(3): 786-795.
|
15. |
李青敏, 李忠正, 邱继文, 等. 基于EEG脑机接口的研究现状及在康复中的应用. 北京生物医学工程, 2017, 36(3): 310-316.
|
16. |
Neuper C, Scherer R, Reiner M, et al. Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res, 2005, 25(3): 668-677.
|
17. |
Chholak P, Niso G, Maksimenko V, et al. Visual and kinesthetic modes affect motor imagery classification in untrained subjects. Sci Rep, 2019, 9: 9838.
|
18. |
Fu Y, Xu B, Li Y, et al. Single-trial decoding of imagined grip force parameters involving the right or left hand based on movement-related cortical potentials. Chinese Sci Bull, 2014, 59(16): 1907-1916.
|
19. |
Feng Z, He Q, Zhang J, et al. A hybrid BCI system based on motor imagery and transient visual evoked potential. Multimed Tools Appl, 2019(2): 1-14.
|
20. |
Chadwick T, Kevin B, Erin A, et al. Accuracy and vividness in motor imagery ability: differences between children and young adults. Dev Neuropsychol, 2020, 45(5): 1-12.
|
21. |
Tariq M, Trivailo P, Simic M. EEG-based BCI control schemes for lower-limb assistive-robots. Front Hum Neurosci, 2018, 12: 312.
|
22. |
Igasaki T, Takemoto J, Sakamoto K. Relationship between kinesthetic/visual motor imagery difficulty and event-related desynchronization/synchronization// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu: IEEE, 2018: 1911-1914.
|
23. |
Thompson M C. Critiquing the concept of BCI illiteracy. Sci Eng Ethics, 2019, 25(4): 1217-1233.
|
24. |
Kosmyna N, Lindgren J T, Lecuyer A. Attending to visual stimuli versus performing visual imagery as a control strategy for EEG-based brain-computer interfaces. Sci Rep, 2018, 8(1): 13222.
|
25. |
李昭阳, 龚安民, 伏云发. 基于EEG脑网络下肢动作视觉想象识别研究. 南京大学学报(自然科学), 2020, 56(4): 570-580.
|
26. |
Dijkstra N, Bosch S, Van Gerven M. Vividness of visual imagery depends on the neural overlap with perception in visual areas. J Neurosci, 2017, 37(5): 1367-1373.
|
27. |
Fu Y, Xiong X, Jiang C, et al. Imagined hand clenching force and speed modulate brain activity and are classified by NIRS combined with EEG. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(9): 1641-1652.
|
28. |
Phang C-R, Ko L-W. Global cortical network distinguishes motor imagination of the left and right foot. IEEE Access, 2020, 8: 103734-103745.
|
29. |
Tariq M, Trivailo P, Simic M. Mu-beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI. PLoS One, 2020, 15(3): e0230184.
|
30. |
Kilintari M, Narayana S, Babajani-Feremi A, et al. Brain activation profiles during kinesthetic and visual imagery: An fMRI study. Brain Res, 2016: 249-261.
|
31. |
Fulford J, Milton F, Salas D, et al. The neural correlates of visual imagery vividness - An fMRI study and literature review. Cortex, 2017, 105: 26-40.
|
32. |
Hardwick R, Caspers S, Eickhoff S, et al. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav R, 2018, 94: 31-44.
|
33. |
Monaco S, Malfatti G, Culham J, et al. Decoding motor imagery and action planning in the early visual cortex: Overlapping but distinct neural mechanisms. Neuroimage, 2020, 218: 116981.
|
34. |
Williams S E, Guillot A, Di Rienzo F, et al. Comparing self-report and mental chronometry measures of motor imagery ability. Eur J Sport Sci, 2015, 15(8): 703-711.
|
35. |
Koizumi K, Ueda K, Nakao M. Development of a cognitive brain-machine interface based on a visual imagery method// 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Jeju: IEEE, 2018: 1062-1065.
|
36. |
Sousa T, Amaral C, Andrade J, et al. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders. J Neural Eng, 2017, 14(4): 046026.
|
37. |
Mizuguchi N, Suezawa M, Kanosue K. Vividness and accuracy: Two independent aspects of motor imagery. Neurosci Res, 2019, 147: 17-25.
|
38. |
周慧琳, 左国坤, 万小平, 等. 基于心理旋转的运动想象行为学实证探索. 生物医学工程学杂志, 2017, 34(2): 173-179.
|
39. |
刘华, 程钰琦, 李洋, 等. 中文版运动觉-视觉想象问卷的结构效度. 中国康复理论与实践, 2017, 23(5): 580-583.
|
40. |
Nakano H, Kodama T, Ukai K, et al. Reliability and validity of the japanese version of the kinesthetic and visual imagery questionnaire (KVIQ). Brain Sci, 2018, 8(5): 79.
|
41. |
Lioi G, Butet S, Fleury M, et al. A multi-target motor imagery training using bimodal EEG-fMRI neurofeedback: A pilot study in chronic stroke patients. Front Hum Neurosci, 2020, 14: 37.
|
42. |
王鹤玮, 贾杰. 心理旋转实验在脑卒中患者运动想象能力评估中的应用. 中国康复医学杂志, 2020, 35(10): 1260-1263.
|
43. |
Ptak R, Schnider A, Fellrath J. The dorsal frontoparietal network: A core system for emulated action. Trends Cogn Sci, 2017, 21(8): 589-599.
|
44. |
Cumming J, Eaves D L. The nature, measurement, and development of imagery ability. Imagin Cogn Personal, 2018, 37(4): 375-393.
|
45. |
Kraeutner S N, Eppler S N, Stratas A, et al. Generate, maintain, manipulate? Exploring the multidimensional nature of motor imagery. Psychol Sport Exerc, 2020, 48: 101673.
|
46. |
Butler A J, Cazeaux J, Fidler A, et al. The movement imagery questionnaire-revised, second edition (MIQ-RS) is a reliable and valid tool for evaluating motor imagery in stroke populations. Evid-based Compl Alt Med, 2012, 2012(8): 497289.
|
47. |
Naito E. Controllability of motor imagery and transformation of visual imagery. Percept Motor Skills, 1994, 78: 479-487.
|
48. |
Campos A, Perez M J. Vividness of movement imagery questionnaire: Relations with other measures of mental imagery. Percept Motor Skill, 1988, 67(2): 607-610.
|
49. |
Start K, Richardson A. Imagery and mental practice. Brit J Educ Psychol, 2011, 34: 280-284.
|
50. |
Roberts R, Callow N, Hardy L, et al. Movement imagery ability: Development and assessment of a revised version of the vividness of movement imagery questionnaire. J Sport Exercise Psy, 2008, 30(2): 200-221.
|
51. |
刘华, 程钰琦, 李洋, 等. 中文版运动觉-视觉想象问卷在不同年龄、性别正常人群中的信度. 中国康复医学杂志, 2017, 32(6): 700-703.
|
52. |
Malouin F, Richards C L, Jackson P L, et al. The kinesthetic and visual imagery questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: A reliability and construct validity study. J Neurol Phys Ther, 2007, 31(1): 20-29.
|
53. |
Subirats L, Allali G, Briansoulet M, et al. Age and gender differences in motor imagery. J Neurol Sci, 2018, 391: 114-117.
|
54. |
Cuenca-Martínez F, Suso-Martí L, Grande-Alonso M, et al. Combining motor imagery with action observation training does not lead to a greater autonomic nervous system response than motor imagery alone during simple and functional movements: A randomized controlled trial. PeerJ, 2018, 6: e5142.
|
55. |
Shepard R N, Metzler J. Mental rotation of three-dimensional objects. Science, 1971, 171(3972): 701-703.
|
56. |
李梦晨. 基于fMRI的运动想象大尺度脑网络研究. 成都: 电子科技大学, 2018.
|
57. |
周伊婕, 宋西姊, 何峰, 等. 基于脑电的多模态神经功能成像新技术研究进展. 中国生物医学工程学报, 2020, 39(5): 595-602.
|
58. |
Yadav D, Yadav S, Veer K. A comprehensive assessment of brain-computer interfaces: Recent trends and challenges. J Neurosci Meth, 2020, 346: 108918.
|
59. |
Ota Y, Takamoto K, Urakawa S, et al. Motor imagery training with neurofeedback from the frontal pole facilitated sensorimotor cortical activity and improved hand dexterity. Front Neurosci, 2020, 14: 34.
|
60. |
张锐. 运动想象脑-机接口的神经机制与识别算法研究. 成都: 电子科技大学, 2015.
|
61. |
Zhang R, Yao D, Valdés-Sosa P, et al. Efficient resting-state EEG network facilitates motor imagery performance. J Neural Eng, 2015, 12(6): 066024.
|
62. |
伏云发, 龚安民, 南文雅. 神经反馈原理与实践. 北京: 电子工业出版社, 2021.
|
63. |
Wang Zhongpeng, Chen Long, Yi Weibo, et al. Enhancement of cortical activation for motor imagery during BCI-FES training* // 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu: IEEE, 2018: 2527-2530.
|
64. |
Curran E, Stokes M. Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn, 2003, 51: 326-336.
|
65. |
陈睿, 伏云发. 基于EEG握力变化及想象单次识别研究. 南京大学学报(自然科学), 2020, 56(2): 159-166.
|
66. |
伏云发, 徐保磊, 李永程, 等. 基于运动相关皮层电位握力运动模式识别研究. 自动化学报, 2014, 40(6): 1045-1057.
|
67. |
Liu C, Fu Y, Yang J, et al. Discrimination of motor imagery patterns by electroencephalogram phase synchronization combined with frequency band energy. IEEE/CAA J Automatic, 2017, 4(3): 551-557.
|
68. |
Lebon F, Horn U, Domin M, et al. Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation. Hum Brain Mapp, 2018, 39(4): 1805-1813.
|
69. |
Lee D, Jang C, Park H J. Neurofeedback learning for mental practice rather than repetitive practice improves neural pattern consistency and functional network efficiency in the subsequent mental motor execution. NeuroImage, 2019, 188: 680-693.
|
70. |
Choi J W, Huh S, Jo S. Improving performance in motor imagery BCI-based control applications via virtually embodied feedback. Comput Biol Med, 2020, 127: 104079.
|
71. |
Neuper C, Schlögl A, Pfurtscheller G. Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. J Clin Neurophysiol, 1999, 16(4): 373-382.
|
72. |
李松, 熊馨, 伏云发. 基于脑电信号神经反馈控制智能小车的研究. 生物医学工程学杂志, 2018, 35(1): 15-24.
|
73. |
Omura T, Kanoh S. A basic study on neuro-feedback training to enhance a change of sensory-motor rhythm during motor imagery tasks// 2017 10th Biomedical Engineering International Conference (BMEiCON). Hokkaido: IEEE, 2017: 1-5.
|
74. |
Hwang H J, Kwon K, Im C H. Neurofeedback-based motor imagery training for brain-computer interface (BCI). J Neurosci Meth, 2009, 179(1): 150-156.
|
75. |
Jo S, Choi J W. Effective motor imagery training with visual feedback for non-invasive brain computer interface// 2018 6th International Conference on Brain and Computer Interface (BCI). Gangwon: IEEE, 2018: 1-4.
|
76. |
Faiz M, Alhamadani A. Online brain-computer interface based five classes EEG to control humanoid robotic hand// 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). Budapest: IEEE, 2019: 406-410.
|
77. |
Yang C, Ye Y, Li X, et al. Development of a neuro-feedback game based on motor imagery EEG. Multimed Tools Appl, 2018, 77: 15929-15949.
|
78. |
Jiang X, Lopez E, Stieger J, et al. Effects of long-term meditation practices on sensorimotor rhythm-based brain-computer interface learning. Front Neurosci, 2021, 14: 584971.
|
79. |
Stieger J, Engel S, Jiang H, et al. Mindfulness improves brain-computer interface performance by increasing control over neural activity in the alpha band. Cereb Cortex, 2020, 31(1): 426-438.
|
80. |
宋逍雄, 高瞻, 周海昌. 基于脑机接口的虚拟冥想训练系统研究. 软件导刊, 2018, 17(7): 19-22.
|
81. |
胡晨潇, 杨帮华, 汪金龙, 等. 基于VR-BCI的上肢康复训练系统设计// 2017中国自动化大会(CAC2017)暨国际智能制造创新大会(CIMIC2017). 济南: IEEE, 2017: 6.
|
82. |
Zheng X, Li J, Ji H, et al. Task transfer learning for EEG classification in motor imagery-based BCI system. Comput Math Method M, 2020, 2020(10): 1-11.
|
83. |
Raza H, Rathee D, Zhou S, et al. Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface. Neurocomputing, 2018, 343: 154-166.
|
84. |
Zhang H, Zhao X, Wu Z, et al. Motor imagery recognition with automatic EEG channel selection and deep learning. J Neural Eng, 2021, 18(1): 016004.
|
85. |
Zhang K, Robinson N, Lee S-W, et al. Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network. Neural Netw, 2020, 136: 1-10.
|