1. |
Vaccaro A, Kaplan Dor Y, Nambara K, et al. Sleep loss can cause death through accumulation of reactive oxygen species in the gut. Cell, 2020, 181(6): 1307-1328.
|
2. |
Benjafield A V, Ayas N T, Eastwood P R, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. The Lancet Respiratory Medicine, 2019, 7(8): 687-698.
|
3. |
Senaratna C V, Perret J L, Lodge C J, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Medicine Reviews, 2017, 34(70): 70-81.
|
4. |
Berry R B, Gleeson K. Respiratory arousal from sleep: mechanisms and significance. Sleep, 1997, 20(8): 654-675.
|
5. |
董霄松. 2006北京国际睡眠医学论坛//觉醒和呼吸性微觉醒的判读及其临床意义,北京: 中华医学会继续教育部, 2006: 174–176.
|
6. |
曹征涛, 杨军, 朱莹莹, 等. 一种基于微动敏感床垫的识别与呼吸事件相关的微觉醒的新算法. 仪器仪表学报, 2008, 29(4): 378-381.
|
7. |
Barbé None, Pericás J, Muñoz A, et al. Automobile accidents in patients with sleep apnea syndrome: an epidemiological and mechanistic study. Am J Respir Crit Care Med, 1998, 158(1): 18-22.
|
8. |
Berry R B, Quan S F, Abreu A R, et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Version 2.6. Darien: Americal Academy of Sleep Medicine, 2020.
|
9. |
Mccormick D A, Bal T. Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience, 1997, 20: 185.
|
10. |
中国医师协会神经内科医师分会睡眠障碍专业委员会, 中国睡眠研究会睡眠障碍专业委员会, 中华医学会神经病学分会睡眠障碍学组. 中国成人多导睡眠监测技术操作规范及临床应用专家共识. 中华医学杂志, 2018, 98(47): 3825-3831.
|
11. |
Bonnet M H, Doghramji K, Roehrs T, et al. The scoring of arousal in sleep: reliability, validity, and alternatives. Journal of Clinical Sleep Medicine, 2007, 3(2): 133-145.
|
12. |
Li A, Chen S, Quan S F, et al. A deep learning-based algorithm for detection of cortical arousal during sleep. Sleep, 2020, 43(12): zsaa120.
|
13. |
Simonnet M, Gourvennec B, BillotI R. Connected heart rate sensors to monitor sleep quality: electrodes, chest belt and smartwatch users acceptability//2016 IEEE 1st International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington: IEEE, 2016: 344–345.
|
14. |
Howe-Patterson M, Pourbabaee B, Benard F. Automated detection of sleep arousals from polysomnography data using a dense convolutional neural network//2018 Computing in Cardiology Conference (CinC), Maastricht: IEEE, 2018. DOI: 10.22489/CinC.2018.232.
|
15. |
Zabihi M, Rad A B, Kiranyaz S, et al. 1D convolutional neural network models for sleep arousal detection. ArXiv, 2019. DOI: 10.48550/arXiv.1903.01552.
|
16. |
Miller D, Ward A, Bambos N. Automatic sleep arousal identification from physiological waveforms using deep learning// 2018 Computing in Cardiology Conference (CinC), Maastricht: IEEE, 2018. DOI: 10.22489/CinC.2018.242.
|
17. |
Olesen A N, Jennum P, Mignot E, et al. Deep transfer learning for improving single-EEG arousal detection//42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal: IEEE, 2020: 99-103.
|
18. |
Chien Y R, Wu C H, Taso H W. Automatic sleep-arousal detection with single-lead EEG using stacking ensemble learning. Sensors, 2021, 21(18): 6049.
|
19. |
Zhang G Q, Cui L, Mueller R, et al. The national sleep research resource: towards a sleep data commons. Journal of the American Medical Informatics Association, 2018, 25(10): 1351-1358.
|
20. |
Li F, Yan R, Mahini R, et al. End-to-end sleep staging using convolutional neural network in raw single-channel EEG. Biomedical Signal Processing and Control, 2021. DOI: 10.1016/j.bspc.2020.102203.
|
21. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need//Neural Information Processing Systems (NIPS), Long Beach, 2017: 6000–6010. DOI: 10.48550/arXiv.1706.03762.
|
22. |
Cheng Jianpeng, Dong L, Lapata M. Long short-term memory-networks for machine reading// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), Austin, 2016: 551–561. DOI: 10.18653/v1/d16-1053.
|
23. |
Li F, Tang H, Shang S, et al. Classification of heart sounds using convolutional neural network. Applied Sciences, 2020, 10(11): 3956.
|
24. |
Bonnet M H, Arand D L. EEG arousal norms by age. Journal of Clinical Sleep Medicine, 2007, 3(3): 271-274.
|
25. |
Fonod R. DeepSleep 2. 0: automated sleep arousal segmentation via deep learning. AI, 2022, 3(1): 164-179.
|
26. |
He R, Wang K, Zhao N, et al. Identification of arousals with deep neural networks (DNNs) using dfferent physiological signals//2018 Computing in Cardiology Conference (CinC), Maastricht: IEEE, 2018. DOI: 10.22489/CinC.2018.060.
|