1. |
Su Y, Fu J, Zhou J, et al. Blending with transition metals improves bioresorbable zinc as better medical implants. Bioact Mater, 2023, 20: 243-258.
|
2. |
Huang S, Wang B, Zhang X, et al. High-purity weight-bearing magnesium screw: translational application in the healing of femoral neck fracture. Biomaterials, 2020, 238: 119829.
|
3. |
Wei S, Ma J X, Xu L, et al. Biodegradable materials for bone defect repair. Mil Med Res, 2020, 7(1): 54.
|
4. |
Su Y, Cockerill I, Wang Y, et al. Zinc-based biomaterials for regeneration and therapy. Trends in Biotechnology, 2019, 37(4): 428-441.
|
5. |
O'Connor J P, Kanjilal D, Teitelbaum M, et al. Zinc as a therapeutic agent in bone regeneration. Materials (Basel), 2020, 13(10): 2211.
|
6. |
Ceylan M N, Akdas S, Yazihan N. Is zinc an important trace element on bone-related diseases and complications? a meta-analysis and systematic review from serum level, dietary intake, and supplementation aspects. Biol Trace Elem Res, 2021, 199(2): 535-549.
|
7. |
Liu Q, Li M, Wang S, et al. Recent advances of osterix transcription factor in osteoblast differentiation and bone formation. Front Cell Dev Biol, 2020, 8: 601224.
|
8. |
Amin N, Clark C C T, Taghizadeh M, et al. Zinc supplements and bone health: The role of the RANKL-RANK axis as a therapeutic target. J Trace Elem Med Biol, 2020, 57: 126417.
|
9. |
Hernández-Escobar D, Champagne S, Yilmazer H, et al. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater, 2019, 97: 1-22.
|
10. |
Qu X, Yang H, Jia B, et al. Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioact Mater, 2021, 6(12): 4607-4624.
|
11. |
Bowen P K, Guillory R J, Shearier E R, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater Sci Eng C Mater Biol Appl, 2015, 56: 467-472.
|
12. |
Li H F, Xie X H, Zheng Y F, et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep, 2015, 5: 10719.
|
13. |
Wang K, Tong X, Lin J, et al. Binary Zn–Ti alloys for orthopedic applications: corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. Journal of Materials Science & Technology, 2021, 74: 216-229.
|
14. |
Jia B, Yang H, Han Y, et al. in vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomater, 2020, 108: 358-372.
|
15. |
Yi Q Q, Liang P C, Liang D Y, et al. Multifunction Sr doped microporous coating on pure magnesium of antibacterial, osteogenic and angiogenic activities. Ceramics International, 2021, 47(6): 8133-8141.
|
16. |
Jia B, Yang H, Zhang Z, et al. Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: in vitro and in vivo studies. Bioact Mater, 2021, 6(6): 1588-1604.
|
17. |
Pachla W, Przybysz S, Jarzębska A, et al. Structural and mechanical aspects of hypoeutectic Zn-Mg binary alloys for biodegradable vascular stent applications. Bioact Mater, 2021, 6(1): 26-44.
|
18. |
Yang N, Balasubramani N, Venezuela J, et al. The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn-Ca-Cu alloys for absorbable wound closure device applications. Bioact Mater, 2021, 6(5): 1436-1451.
|
19. |
Shi Z Z, Gao X X, Zhang H J, et al. Design biodegradable Zn alloys: second phases and their significant influences on alloy properties. Bioact Mater, 2020, 5(2): 210-218.
|
20. |
Yang hongtao, Qu Xinhua, Wang Minqi, et al. Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites. Chemical Engineering Journal, 2021, 417: 129317.
|
21. |
Bednarczyk W, Wątroba M, Kawałko J, et al. Determination of room-temperature superplastic asymmetry and anisotropy of Zn-0.8Ag alloy processed by ECAP. Materials Science and Engineering: A, 2019, 759: 55-58.
|
22. |
Smalcerz A, Wecki B, Blacha L, et al. Kinetics of zinc evaporation from aluminium alloys melted using VIM and ISM technologies. Materials (Basel), 2021, 14(21): 6641.
|
23. |
Klíma K, Ulmann D, Bartoš M, et al. Zn-0.8Mg-0.2Sr (wt.%) absorbable screws-an in-vivo biocompatibility and degradation pilot study on a rabbit model. Materials (Basel), 2021, 14(12): 3271.
|
24. |
Sun J, Zhang X, Shi Z Z, et al. Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation. Acta Biomater, 2021, 119: 485-498.
|
25. |
Shao X, Wang X, Xu F, et al. In vivo biocompatibility and degradability of a Zn-Mg-Fe alloy osteosynthesis system. Bioact Mater, 2022, 7: 154-166.
|
26. |
Yang H, Jia B, Zhang Z, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun, 2020, 11(1): 401.
|
27. |
Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta Biomater, 2019, 87: 1-40.
|
28. |
Shuai C, Cheng Y, Yang Y, et al. Laser additive manufacturing of Zn-2Al part for bone repair: formability, microstructure and properties. Journal of Alloys and Compounds, 2019, 798: 606-615.
|
29. |
Sotoudeh Bagha P, Khaleghpanah S, Sheibani S, et al. Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying. Journal of Alloys and Compounds, 2018, 735: 1319-1327.
|
30. |
Wątroba M, Bednarczyk W, Kawalko J, et al. A novel high-strength Zn-3Ag-0.5Mg alloy processed by hot extrusion, cold rolling, or high-pressure torsion. Metallurgical and Materials Transactions A, 2020, 51: 3335-3348.
|
31. |
Liu H, Huang H, Zhang Y, et al. Evolution of Mg–Zn second phases during ECAP at different processing temperatures and its impact on mechanical properties of Zn-1.6Mg (wt.%) alloys. Journal of Alloys and Compounds, 2019, 811: 151987.
|
32. |
Zhuang Y, Liu Q, Jia G, et al. A biomimetic Zinc alloy scaffold coated with brushite for enhanced cranial bone regeneration. ACS Biomater Sci Eng, 2021, 7(3): 893-903.
|
33. |
Yang Y, Yang M, He C, et al. Rare earth improves strength and creep resistance of additively manufactured Zn implants. Composites Part B: Engineering, 2021, 216: 108882.
|
34. |
Montani M, Demir A G, Mostaed E, et al. Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing. Rapid Prototyping Journal, 2017, 23(3): 514-523.
|
35. |
Qin Y, Yang H, Liu A, et al. Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals. Acta Biomaterialia, 2022, 142: 388-401.
|
36. |
Li Y, Pavanram P, Zhou J, et al. Additively manufactured functionally graded biodegradable porous zinc. Biomater Sci, 2020, 8(9): 2404-2419.
|
37. |
Foteinopoulos P, Papacharalampopoulos A, Angelopoulos K, et al. Development of a simulation approach for laser powder bed fusion based on scanning strategy selection. The International Journal of Advanced Manufacturing Technology, 2020, 108: 3085-3100.
|
38. |
Md Yusop A H, Ulum M F, Al Sakkaf A, et al. Current status and outlook of porous Zn-based scaffolds for bone applications: a review. Journal of Bionic Engineering, 2022, 19: 737-751.
|
39. |
Cockerill I, Su Y, Sinha S, et al. Porous zinc scaffolds for bone tissue engineering applications: a novel additive manufacturing and casting approach. Mater Sci Eng C Mater Biol Appl, 2020, 110: 110738.
|
40. |
Li Y, Jahr H, Zhou J, et al. Additively manufactured biodegradable porous metals. Acta Biomaterialia, 2020, 115: 29-50.
|
41. |
Lewis G S, Mischler D, Wee H, et al. Finite element analysis of fracture fixation. Curr Osteoporos Rep, 2021, 19(4): 403-416.
|
42. |
Vautrin A, Wesseling M, Wirix-Speetjens R, et al. Time-dependent in silico modelling of orthognathic surgery to support the design of biodegradable bone plates. J Mech Behav Biomed Mater, 2021, 121:104641.
|
43. |
Zhang H, Takezawa A, Ding X, et al. Bi-material microstructural design of biodegradable composites using topology optimization [J]. Materials & Design, 2021, 209:109973.
|
44. |
Rakesh K R, Bontha S, Ramesh M R, et al. Degradation, wettability and surface characteristics of laser surface modified Mg-Zn-Gd-Nd alloy. J Mater Sci Mater Med, 2020, 31(5): 42.
|
45. |
Sheng Y, Yang J, Zhao X, et al. Development and in vitro biodegradation of biomimetic zwitterionic phosphorylcholine chitosan coating on Zn1Mg alloy. ACS Appl Mater Interfaces, 2020, 12(49): 54445-54458.
|