1. |
Zhao L. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement, 2020, 16(3): 391-460.
|
2. |
Jessen F, Amariglio R E, Buckley R F, et al. The characterisation of subjective cognitive decline. Lancet Neurol, 2020, 19(3): 271-278.
|
3. |
Ismail Z, Smith E E, Geda Y, et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: Provisional diagnostic criteria for mild behavioral impairment. Alzheimers Dement, 2016, 12(2): 195-202.
|
4. |
Atri A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am, 2019, 103(2): 263-293.
|
5. |
Creese B, Brooker H, Ismail Z, et al. Mild behavioral impairment as a marker of cognitive decline in cognitively normal older adults. Am J Geriat Psychiatry, 2019, 27(8): 823-834.
|
6. |
李恒智, 文冬, 魏振豪, 等. 轻度认知障碍患者EEG动力学特征提取与分类方法研究进展. 中国生物医学工程学报, 2019, 38(3): 348-354.
|
7. |
林伟铭, 袁江南, 冯陈伟, 等. 基于极限学习机的阿尔兹海默病辅助诊断. 中国生物医学工程学报, 2020, 39(3): 288-294.
|
8. |
Tanveer M, Richhariya B, Khan R U, et al. Machine learning techniques for the diagnosis of Alzheimer’s disease: a review. ACM Trans Multimed Comput Commun Appl, 2020, 16(1): 35.
|
9. |
Zhang Yuanpeng, Wang Shuihua, Xia Kaijian, et al. Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion. Inf Fusion, 2021, 66: 170-183.
|
10. |
Yin J, Cao J, Siuly S, et al. An integrated MCI detection framework based on spectral-temporal analysis. Int J Auto Comput, 2019, 16(6): 786-799.
|
11. |
Siuly S, Alçin Ö F, Kabir E, et al. A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(9): 1966-1976.
|
12. |
Liu M, Zhang J, Adeli E, et al. Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans Biomed Eng, 2018, 66(5): 1195-1206.
|
13. |
Zhou T, Thung K H, Zhu X, et al. Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Hum Brain Mapp, 2019, 40(3): 1001-1016.
|
14. |
Islam J, Zhang Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inf, 2018, 5(2): 1-14.
|
15. |
Jo T, Nho K, Saykin A J. Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci, 2019, 11: 220.
|
16. |
Ieracitano C, Mammone N, Bramanti A, et al. A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing, 2019, 323: 96-107.
|
17. |
曾安, 贾龙飞, 潘丹. 基于卷积神经网络和集成学习的阿尔茨海默症早期诊断. 生物医学工程学杂志, 2019, 36(5): 711-719.
|
18. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
|
19. |
Yu Y, Si X, Hu C, et al. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput, 2019, 31(7): 1235-1270.
|
20. |
Pan Q, Wang S, Zhang J. Prediction of Alzheimer’s disease based on bidirectional LSTM. J Phys Conf Ser, 2019, 1187(5): 052030.
|
21. |
Michielli N, Acharya U R, Molinari F. Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput Biol Med, 2019, 106: 71-81.
|
22. |
Tsiouris K M, Pezoulas V C, Zervakis M, et al. A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med, 2018, 99: 24-37.
|
23. |
Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM networks// Proceedings of 2005 IEEE International Joint Conference on Neural Networks, 2005. Montreal: IEEE, 2005, 4: 2047-2052.
|
24. |
Liu G, Guo J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing, 2019, 337(APR.14): 325-338.
|
25. |
Yan W, Zhang H, Sui J, et al. Deep chronnectome learning via full bidirectional long short-term memory networks for MCI diagnosis. Med Image Comput Comput Assist Interv, 2018, 11072: 249-257.
|
26. |
Feng C, Elazab A, Yang P, et al. Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access, 2019, 7: 63605-63618.
|
27. |
Simons S, Espino P, Abásolo D. Fuzzy entropy analysis of the electroencephalogram in patients with Alzheimer’s disease: is the method superior to sample entropy? Entropy, 2018, 20(1): 21.
|
28. |
Gaurav G, Anand R S, Kumar V. EEG based cognitive task classification using multifractal detrended fluctuation analysis. Cogn Neurodyn, 2021, 15(6): 999-1013.
|
29. |
李昕, 孙小棋, 齐晓英, 等. 面向心理压力评估的脑电信号多重分形去趋势波动分析方法研究. 生物医学工程学杂志, 2017, 34(2): 180-187.
|
30. |
Lee S H, Chan C S, Remagnino P. Multi-organ plant classification based on convolutional and recurrent neural networks. IEEE Trans Image Process, 2018, 27(99): 4287-4301.
|